An improved spectrum sharing strategy evaluation over wireless network framework to perform error free communications
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.4.36Keywords:
Communication, Cognitive Sensor Network, Cognitive Spectrum, Spectrum Sharing, Wireless Network FrameworkDimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The possible application of wireless sensor networks is hampered and the widespread use of this novel method is slowed, according to recent surveys conducted within the field of automation in industry, which identified that accuracy pertains indicate currently among the primary obstacles to the dissemination of wireless networking for recognizing and regulating applications. In order to overcome these constraints, it is necessary to raise public understanding of the reasons for dependability issues and the potential approaches to resolving them. Low-power communications of sensor nodes are, in reality, quite susceptible to adverse channel conditions and can readily be affected by transmissions of other co-located devices, making them seem unreliable. In this dissertation, I explore several strategies that may be used to either eliminate interference altogether or reduce its negative consequences. In this paper, we study the creation and modeling of a brand-new spectrum allocation mechanism for wireless sensor networks. Cognitive radio technology can detect spectrum holes in the environment, learn from its surroundings using artificial intelligence, adjust the system’s operating parameters in real-time, and use the secondary spectrum to increase efficiency. In this study, we present a reinforcement learning-based strategy for choosing the power of transmission and frequency that can help individual sensors learn from their prior decisions and those of their peers. Our suggested approach is multiple agents decentralized and adaptable to both the data needs from source to sink and the amount of energy that sensing devices in the network have left over. In comparison to different resource allocation algorithms, the results reveal a dramatic increase in the lifespan of the network.Abstract
How to Cite
Downloads
Similar Articles
- N. Sasirekha, R. Anitha, Vanathi T, Umarani Balakrishnan, Automatic liver tumor segmentation from CT images using random forest algorithm , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Sharanagouda N. Patil, Ramesh M. Kagalkar, Analysis of substrate materials for flexible and wearable MIMO antenna for wireless communication , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Kavitha V, Panneer Arokiaraj S., RPL-eSOA: Enhancing IoT network sustainability with RPL and enhanced sandpiper optimization algorithm , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Allin Joe D, Thiyagarajan Krishnan, A modified sierpinski carpet antenna structure for multiband wireless applications , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- K. Mohamed Arif Khan, A.R. Mohamed Shanavas, Energy efficient techniques for iot application on resource aware fog computing paradigm , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- Lakshminarayani A, A Shaik Abdul Khadir, A blockchain-integrated smart healthcare framework utilizing dynamic hunting leadership algorithm with deep learning-based disease detection and classification model , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Yasodha V, V. Sinthu Janita, AI-driven IoT routing: A hybrid deep reinforcement learning and shrike optimization framework for energy-efficient communication , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper
- R Sharmila, Nikhil S Patankar, Manjula Prabakaran, Chandra M. V. S. Akana, Arvind K Shukla, T. Raja, Recent developments in flexible printed electronics and their use in food quality monitoring and intelligent food packaging , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- R. Sakthiraman, L. Arockiam, RFSVMDD: Ensemble of multi-dimension random forest and custom-made support vector machine for detecting RPL DDoS attacks in an IoT-based WSN environment , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
- R. Prabhu, P. Archana, S. Anusooya, P. Anuradha, Improved Steganography for IoT Network Node Data Security Promoting Secure Data Transmission using Generative Adversarial Networks , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.

