An improved spectrum sharing strategy evaluation over wireless network framework to perform error free communications
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.4.36Keywords:
Communication, Cognitive Sensor Network, Cognitive Spectrum, Spectrum Sharing, Wireless Network FrameworkDimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The possible application of wireless sensor networks is hampered and the widespread use of this novel method is slowed, according to recent surveys conducted within the field of automation in industry, which identified that accuracy pertains indicate currently among the primary obstacles to the dissemination of wireless networking for recognizing and regulating applications. In order to overcome these constraints, it is necessary to raise public understanding of the reasons for dependability issues and the potential approaches to resolving them. Low-power communications of sensor nodes are, in reality, quite susceptible to adverse channel conditions and can readily be affected by transmissions of other co-located devices, making them seem unreliable. In this dissertation, I explore several strategies that may be used to either eliminate interference altogether or reduce its negative consequences. In this paper, we study the creation and modeling of a brand-new spectrum allocation mechanism for wireless sensor networks. Cognitive radio technology can detect spectrum holes in the environment, learn from its surroundings using artificial intelligence, adjust the system’s operating parameters in real-time, and use the secondary spectrum to increase efficiency. In this study, we present a reinforcement learning-based strategy for choosing the power of transmission and frequency that can help individual sensors learn from their prior decisions and those of their peers. Our suggested approach is multiple agents decentralized and adaptable to both the data needs from source to sink and the amount of energy that sensing devices in the network have left over. In comparison to different resource allocation algorithms, the results reveal a dramatic increase in the lifespan of the network.Abstract
How to Cite
Downloads
Similar Articles
- S. Mohamed Iliyas, M. Mohamed Surputheen, A.R. Mohamed Shanavas, Trust-based symmetric game theory for physical layer security in wi-fi communication , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- Hardik Talsania, Kirit Modi, Attention-Enhanced Multi-Modal Machine Learning for Cardiovascular Disease Diagnosis , The Scientific Temper: Vol. 17 No. 01 (2026): The Scientific Temper
- Sirajum Munira Priety, Farhan Bin Manjur, AI Driven Approach in Smart Manufacturing in Bangladesh , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- Shaik Chanbasha, N. Jayakumar, N. Bupesh Kumar, A self-regulating optimization algorithm for locating and sizing a local power generation source for a radial structured distribution system in deregulated environment , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Rudrapati Bhuvaneswara Prasad, Avutala Mallikarjuna Reddy, Edge properties of lexicographic product graphs of open neighborhood graphs , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper
- R. Rita Jenifer, V. Sinthu Janita, Energy-aware Security Optimized Elliptic Curve Digital Signature Algorithm for Universal IoT Networks , The Scientific Temper: Vol. 16 No. 09 (2025): The Scientific Temper
- Rasheedha A, Santhosh B, Archana N, Sandhiya A, Foot sens - foot pressure monitoring systems , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Bayelign A. Zelalem, Ayalew A. Abebe, Evaluating supply chain management practice among micro and small manufacturing enterprise in southwest, Ethiopia , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- D. Prabakar, Santhosh Kumar D.R., R.S. Kumar, Chitra M., Somasundaram K., S.D.P. Ragavendiran, Narayan K. Vyas, Task offloading and trajectory control techniques in unmanned aerial vehicles with Internet of Things – An exhaustive review , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Pankaj Gupta, Niyati Chaudhary, Model Building with Antecedents and Consequences of Workplace Bullying: A SPAR-4-SLR approach using ADO-TCCM Framework with Bibliometric Analysis , The Scientific Temper: Vol. 17 No. 01 (2026): The Scientific Temper
<< < 5 6 7 8 9 10 11 12 13 14 > >>
You may also start an advanced similarity search for this article.

