Investigating privacy-preserving machine learning for healthcare data sharing through federated learning
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.4.37Keywords:
Privacy-preserving machine learning, Federated learning, Healthcare data sharing, Comorbidity index, Data fairness, Sample size variation.Dimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Privacy-Preserving Machine Learning (PPML) is a pivotal paradigm in healthcare research, offering innovative solutions to the challenges of data sharing and privacy preservation. In the context of Federated Learning, this paper investigates the implementation of PPML for healthcare data sharing, focusing on the dynamic nature of data collection, sample sizes, data modalities, patient demographics, and comorbidity indices. The results reveal substantial variations in sample sizes across substudies, underscoring the need to align data collection with research objectives and available resources. The distribution of measures demonstrates a balanced approach to healthcare data modalities, ensuring data fairness and equity. The interplay between average age and sample size highlights the significance of tailored privacy-preserving strategies. The comorbidity index distribution provides insights into the health status of the studied population and aids in personalized healthcare. Additionally, the fluctuation of sample sizes over substudies emphasizes the adaptability of privacy-preserving machine learning models in diverse healthcare research scenarios. Overall, this investigation contributes to the evolving landscape of healthcare data sharing by addressing the challenges of data heterogeneity, regulatory compliance, and collaborative model development. The findings empower researchers and healthcare professionals to strike a balance between data utility and privacy preservation, ultimately advancing the field of privacy-preserving machine learning in healthcare research.Abstract
How to Cite
Downloads
Similar Articles
- NAVEEN KUMAR SHARMA, KAPIL KUMAR, A REVIEW OF HIMALAYAN BIODIVERSITY WITH REFERENCE TO UTTARAKHAND , The Scientific Temper: Vol. 10 No. 1&2 (2019): The Scientific Temper
- KANAKLATA ., HOST PREDILECTION STUDIES IN RANGEENI STRAIN OF LAC INSECT (KERRIA LACCA KERR) , The Scientific Temper: Vol. 10 No. 1&2 (2019): The Scientific Temper
- Rudrapati Bhuvaneswara Prasad, Avutala Mallikarjuna Reddy, Edge properties of lexicographic product graphs of open neighborhood graphs , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper
- Shaik Chanbasha, N. Jayakumar, N. Bupesh Kumar, A self-regulating optimization algorithm for locating and sizing a local power generation source for a radial structured distribution system in deregulated environment , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Brigith Gladys L, Merline Vinotha J, Sustainable fuzzy rough multi-objective multi-route cold transportation model with traffic flow and route constraints , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper
- Swetha Rajkumar, Subasree Palanisamy, Online detection and diagnosis of sensor faults for a non-linear system , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Mineshi Mishra, Purnima Awasthi, Psychosocial factors affecting risk of post-partum depression among mothers and their Birth satisfaction: A systematic review , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
- Shanmuganathi Ayyankalai, Srinivasaragavan Subburaj, Prasanna Kumari Nataraj, Measuring the research productivity on environmental toxicology: A scientometric study , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper
- Saarumathi R, Ritha W, Conglomerate Charge and Merchandise Swayed Inventory Model for Fragile Vendibles , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper
- Kanthalakshmi S, Nikitha M. S, Pradeepa G, Classification of weld defects using machine vision using convolutional neural network , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
<< < 46 47 48 49 50 51 52 53 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Neerav Nishant, Nisha Rathore, Vinay Kumar Nassa, Vijay Kumar Dwivedi, Thulasimani T, Surrya Prakash Dillibabu, Integrating machine learning and mathematical programming for efficient optimization of electric discharge machining technique , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Dileep Pulugu, Shaik K. Ahamed, Senthil Vadivu, Nisarg Gandhewar, U D Prasan, S. Koteswari, Empowering healthcare with NLP-driven deep learning unveiling biomedical materials through text mining , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Ravikiran K, Neerav Nishant, M Sreedhar, N.Kavitha, Mathur N Kathiravan, Geetha A, Deep learning methods and integrated digital image processing techniques for detecting and evaluating wheat stripe rust disease , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper

