Investigating privacy-preserving machine learning for healthcare data sharing through federated learning
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.4.37Keywords:
Privacy-preserving machine learning, Federated learning, Healthcare data sharing, Comorbidity index, Data fairness, Sample size variation.Dimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Privacy-Preserving Machine Learning (PPML) is a pivotal paradigm in healthcare research, offering innovative solutions to the challenges of data sharing and privacy preservation. In the context of Federated Learning, this paper investigates the implementation of PPML for healthcare data sharing, focusing on the dynamic nature of data collection, sample sizes, data modalities, patient demographics, and comorbidity indices. The results reveal substantial variations in sample sizes across substudies, underscoring the need to align data collection with research objectives and available resources. The distribution of measures demonstrates a balanced approach to healthcare data modalities, ensuring data fairness and equity. The interplay between average age and sample size highlights the significance of tailored privacy-preserving strategies. The comorbidity index distribution provides insights into the health status of the studied population and aids in personalized healthcare. Additionally, the fluctuation of sample sizes over substudies emphasizes the adaptability of privacy-preserving machine learning models in diverse healthcare research scenarios. Overall, this investigation contributes to the evolving landscape of healthcare data sharing by addressing the challenges of data heterogeneity, regulatory compliance, and collaborative model development. The findings empower researchers and healthcare professionals to strike a balance between data utility and privacy preservation, ultimately advancing the field of privacy-preserving machine learning in healthcare research.Abstract
How to Cite
Downloads
Similar Articles
- P Janavarthini, I Antonitte Vinoline, Sustainable fuzzy inventory for concurrent fabrication and material depletion modeling with random substandard items , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
- Kalyani K., Praveen Kumar T. D., Roopa A. N., AI-based tools for enhancing reflective practice and self-efficacy in pre-service teachers , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
- Kurubara Amaresh, M. S. Ganachari, Revanasiddappa Devarinti , Enhancing participant understanding and ethical considerations in clinical trial biospecimen research: Insights from an oncology setting in India , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Ayalew Ali, Determinants of banks profitability: Do capital structure and dividend policy matters? , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
- RAMENDRA KUMAR DWIVEDI, PREM NARAYAN TRIPATHI, AGE AND GROWTH RELATIONSHIP OF CATLA CATLA IN AQUATIC ECOSYSTEM OF RIVER GHAGHRA AT AYODHYA , The Scientific Temper: Vol. 10 No. 1&2 (2019): The Scientific Temper
- Geeta S. Desai, Santosh Hajare, Sangeeta Kharde, Evaluation of health practices among individuals with non-alcoholic fatty liver disease: A randomized controlled trial , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Abbasova Sona Jamal, Aliyev Sabit Shakir, Mahmudov Elmir Heydar, Museyibli Emin Bakir, Nadirkhanova Dilshat Adalat, Econometric analysis of grain yields (using the example of the Republic of Azerbaijan) , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- Sujay Bhalchandra, Nilesh D. Shinde, An exploratory study of factors influencing manufacturer-dealer relationship in Indian automobile industry , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Heena Gulia, Sunder Singh Arya, Neha Yadav, Ajay Kumar, Monika Janaagal, Mamta Sawariya, Naveen Kumar, Himanshu Mehra, Sunil Yadav, Sudershan Singh, Reetu Verma, Strategies for adaptations and mitigation of abiotic stresses in crops: A review , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper
- UMA SHANKAR SHUKLA, AN INFLATED PROBABILITY MODEL FOR INFECTION , The Scientific Temper: Vol. 10 No. 1&2 (2019): The Scientific Temper
<< < 45 46 47 48 49 50 51 52 53 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Neerav Nishant, Nisha Rathore, Vinay Kumar Nassa, Vijay Kumar Dwivedi, Thulasimani T, Surrya Prakash Dillibabu, Integrating machine learning and mathematical programming for efficient optimization of electric discharge machining technique , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Dileep Pulugu, Shaik K. Ahamed, Senthil Vadivu, Nisarg Gandhewar, U D Prasan, S. Koteswari, Empowering healthcare with NLP-driven deep learning unveiling biomedical materials through text mining , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Ravikiran K, Neerav Nishant, M Sreedhar, N.Kavitha, Mathur N Kathiravan, Geetha A, Deep learning methods and integrated digital image processing techniques for detecting and evaluating wheat stripe rust disease , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper

