Quantum Key Distribution-based Techniques in IoT
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.3.69Keywords:
Authentication,Cryptography, Internet of Things, Quantum Computing, Quantum Key Distribution.Dimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Quantum key distribution (QKD) is a cryptographic technique that creates a secure channel of communication between two parties by applying the ideas of quantum physics. QKD ensures the confidentiality and integrity of data transmission by providing a unique key that the intended recipient can only access. Secure communication has become paramount with the proliferation of IoT (Internet of Things) devices. IoT devices have confined computational power and storage, making them vulnerable to attacks. QKD provides a safe and efficient solution for securing communication between IoT devices. This paper examines how QKD can be utilized in IoT, discussing its benefits and limitations, followed by the discussion on various QKD protocols suitable for IoT devices. In addition, the paper demonstrates that QKD is a promising solution for securing IoT communication, and its adoption significantly enhances the security and reliability of IoT networks.Abstract
How to Cite
Downloads
Similar Articles
- Harshaben Raghubhai Pankuta, Kusum R. Yadav, Assessing students’ perception of the academic features of the Gyankunj Project , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- Mohit Kalra, Arpan Nautiyal, Krishnapal Singh, Health Assessment of Buksa Tribe: Exploring CSR Models for Indigenous Community Empowerment in Ramnagar Block, Nainital District , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- Rajeshwari D, C. Victoria Priscilla, An optimized real-time human detected keyframe extraction algorithm (HDKFE) based on faster R-CNN , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- T. Malathi, T. Dheepak, Enhanced regression method for weather forecasting , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Dhirender ., HISTOENZYMOLOGICAL OBSERVATIONS ON ACID PHOSPHATASE ACTIVITY IN THE OESOPHAGUS OF HGCL2- TREATED FISH, LABEO ROHITA , The Scientific Temper: Vol. 8 No. 1&2 (2017): The Scientific Temper
- Desalu Tamirat, Tesfaye Getachew , Worku masho, Zelalem Admasu , Morphological and morphometric features of indigenous chicken in North Shewa zone, Oromia regional state, Ethiopia , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Sawitri Devi, Raj Kumar, Unveiling scholarly insights: A bibliometric analysis of literature on gender bias at the workplace , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Roop Kanwal, Children’s literature as a tool for social change: Teaching values and social awareness , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- C. Premila Rosy, Clustering of cancer text documents in the medical field using machine learning heuristics , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- Sharanya Unnikrishnan, Eldhose Thomas, Arunima Dey, AI-Powered NLP in Vernacular Public Relations: Opportunities, Challenges, and Ethical Implications for India’s Multilingual Landscape , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
<< < 18 19 20 21 22 23 24 25 26 > >>
You may also start an advanced similarity search for this article.

