Data science and machine learning methods for detecting credit card fraud
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.3.43Keywords:
Credit card fraud detection, Hybrid models, Machine learning, Rule-based systems, Data scienceDimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Credit card fraud remains a persistent challenge in the realm of financial security, necessitating innovative approaches for detection. This paper presents a comprehensive investigation into credit card fraud detection, focusing on integrating rule-based systems and machine learning methods to enhance accuracy and efficiency. The methodology encompasses data collection from a reputable source, thorough preprocessing, model development, and online execution. Performance evaluation employs a diverse array of metrics, including precision, recall, F1 score, accuracy, confusion matrix, false positive rate, learning curve, precision-recall curve, cumulative gains curve, and ROC curve. Results demonstrate a balanced trade-off between precision and recall, essential for effective fraud detection. Detailed discussions interpret these findings, offering valuable insights and avenues for future research. This research contributes to advancing fraud detection methodologies and holds promise for enhancing financial transaction securityAbstract
How to Cite
Downloads
Similar Articles
- Rajeev P. R., K. Aravinthan, A novel approach for metrics-based software defect prediction using genetic algorithm , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- C. Agilan, Lakshna Arun, Optimization-based clustering feature extraction approach for human emotion recognition , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Sruthy M.S, R. Suganya, An efficient key establishment for pervasive healthcare monitoring , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Krishna P. Kalyanathaya, Krishna Prasad K, A novel method for developing explainable machine learning framework using feature neutralization technique , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- S. Sindhu, L. Arockiam, A lightweight selective stacking framework for IoT crop recommendation , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- R. Kalaiselvi, P. Meenakshi Sundaram, Machine learning-based ERA model for detecting Sybil attacks on mobile ad hoc networks , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- V. Manikandabalaji, R. Sivakumar, V. Maniraj, A novel approach using type-II fuzzy differential evolution is proposed for identifying and diagnosis of diabetes using semantic ontology , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Hemamalini V., Victoria Priscilla C, Deep learning driven image steganalysis approach with the impact of dilation rate using DDS_SE-net on diverse datasets , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- A. Rukmani, C. Jayanthi, Fuzzy optimization trust aware clustering approach for the detection of malicious node in the wireless sensor networks , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Subin M. Varghese, K. Aravinthan, A robust finger detection based sign language recognition using pattern recognition techniques , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
<< < 10 11 12 13 14 15 16 17 18 19 > >>
You may also start an advanced similarity search for this article.

