English language analysis using pattern recognition and machine learning
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.3.32Keywords:
Computer text, Handwriting data, OCR, Pattern recognition, Statistical structureDimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Pattern identification and classification in complicated systems are difficult. This study uses optical character recognition (OCR) to digitize handwritten data. OCR segments and categorizes characters using online and offline methods for different input sources. Hindi and Bangladeshi categorization results unite linguistic studies. Handwriting recognition systems create editable digital documents from touchscreens, electronic pens, scanners, and photographs. Statistical, structural, neural network and syntactic methods improve online and offline recognition. In “english language analysis using pattern recognition and machine learning,” the accuracy of various approaches is examined, showing deep convolution neural networks (DCNN) 98% accuracy in recognizing subtle linguistic patterns. Nave Bayes, a trustworthy language analysis approach, has 96.2% accuracy. Table recognition (TR) algorithms retrieve structured information at 97%. This method outperforms others with 98.4% accuracy. This unique strategy could improve english language analysis using cutting-edge pattern recognition and machine learning techniques.Abstract
How to Cite
Downloads
Similar Articles
- Pratibha Baluni, Pankaj Bahuguna, Rajani ., Rajesh Rayal, Nikhil Singh Kahera, Periphyton Community Structure of the Spring-fed Foot-hill Stream Tamsa Nadi from Doon Valley, Uttarakhand, India , The Scientific Temper: Vol. 11 No. 1&2 (2020): The Scientific Temper
- Dharmendra Singh, Surabhi Singh, Identification of Microsatellite DNA for Population Genetic Analysis in Tor tor , The Scientific Temper: Vol. 11 No. 1&2 (2020): The Scientific Temper
- M. A. Shanti, Optimizing predictive accuracy: A comparative study of feature selection strategies in the healthcare domain , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- NAVEEN KUMAR SHARMA, KAPIL KUMAR, A REVIEW OF HIMALAYAN BIODIVERSITY WITH REFERENCE TO UTTARAKHAND , The Scientific Temper: Vol. 10 No. 1&2 (2019): The Scientific Temper
- UMA SHANKAR SHUKLA, AN INFLATED PROBABILITY MODEL FOR INFECTION , The Scientific Temper: Vol. 10 No. 1&2 (2019): The Scientific Temper
- Santima Uchukanokkul, Bijal Zaveri, Impact of emerging global educational trends on overseas education programs for aspiring students in South East Asia and South Asia: A decadal analysis , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- P. Susai Raj, A. Edward William Benjamin, Evaluating the effectiveness of academic resilience intervention for at-risk students at higher secondary level , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- MRINAL CHANDRA, “SPECTRAL STUDIES & ANTIMICROBIAL STUDIES ON Cu(II) WITH SCHIFF BASE CONTAINING SNS DONOR LIGANDS , The Scientific Temper: Vol. 8 No. 1&2 (2017): The Scientific Temper
- AMRINAL CHANDRA, H.C. RAI, “SYNTHESIS AND SPECTRAL STUDIES OF Co(II) AND Ni(II) COMPLEXES WITH SCHIFF BASE LIGAND 1,6-DIMERCAPTO-1,6 DIAMINO-2,4,5-TRIAZA-3-PHENYL-3-HEXENE” , The Scientific Temper: Vol. 8 No. 1&2 (2017): The Scientific Temper
- Nabab Ali, Equabal Jawaid, Spatial Insect Biodiversity and Community Analysis in Selected Rice Fields of North Bihar , The Scientific Temper: Vol. 13 No. 01 (2022): The Scientific Temper
<< < 24 25 26 27 28 29 30 31 32 33 > >>
You may also start an advanced similarity search for this article.