English language analysis using pattern recognition and machine learning
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.3.32Keywords:
Computer text, Handwriting data, OCR, Pattern recognition, Statistical structureDimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Pattern identification and classification in complicated systems are difficult. This study uses optical character recognition (OCR) to digitize handwritten data. OCR segments and categorizes characters using online and offline methods for different input sources. Hindi and Bangladeshi categorization results unite linguistic studies. Handwriting recognition systems create editable digital documents from touchscreens, electronic pens, scanners, and photographs. Statistical, structural, neural network and syntactic methods improve online and offline recognition. In “english language analysis using pattern recognition and machine learning,” the accuracy of various approaches is examined, showing deep convolution neural networks (DCNN) 98% accuracy in recognizing subtle linguistic patterns. Nave Bayes, a trustworthy language analysis approach, has 96.2% accuracy. Table recognition (TR) algorithms retrieve structured information at 97%. This method outperforms others with 98.4% accuracy. This unique strategy could improve english language analysis using cutting-edge pattern recognition and machine learning techniques.Abstract
How to Cite
Downloads
Similar Articles
- Vikas Chaudhary, Parul Jhajharia, Mediation of competitive advantage between strategy management practices and organizational performance , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Poojith K. D. P, Somashekhara ., Dasharatha P. Angadi, Assessing the impact of cyclonic storm Tauktae on shoreline change in Mangaluru coast using geospatial technology , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- M. Rajalakshmi, V. Sulochana, Enhancing deep learning model performance in air quality classification through probabilistic hyperparameter tuning with tree-structured Parzen estimators , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- K. Vani, S. Sujatha, Fault tolerance systems in open source cloud computing environments–A systematic review , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Sheena Edavalath, Manikandasaran S. Sundaram, Cost-based resource allocation method for efficient allocation of resources in a heterogeneous cloud environment , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Ahmed Mustefa, Efficacy of coffee farmers’ cooperatives in Gimbo Woreda, Kafa Zone, Ethiopia , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Navjot Singh, Sultan Singh, Demographic perception of customers towards dairy marketing practices: An empirical study , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- R Sharmila, Nikhil S Patankar, Manjula Prabakaran, Chandra M. V. S. Akana, Arvind K Shukla, T. Raja, Recent developments in flexible printed electronics and their use in food quality monitoring and intelligent food packaging , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Pravin P. P, J. Arunshankar, Development of digital twin for PMDC motor control loop , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Heikham G. Chanu, Sudha A. Raddi, Anita Dalal, Sangeeta N. Kharde, Shivani Tendulkar, Association between the socio-demographic variables of women admitted for delivery to a Tertiary Care Hospital and their maternal and neonatal outcome - A cross-sectional study , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
<< < 17 18 19 20 21 22 23 24 25 26 > >>
You may also start an advanced similarity search for this article.