English language analysis using pattern recognition and machine learning
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.3.32Keywords:
Computer text, Handwriting data, OCR, Pattern recognition, Statistical structureDimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Pattern identification and classification in complicated systems are difficult. This study uses optical character recognition (OCR) to digitize handwritten data. OCR segments and categorizes characters using online and offline methods for different input sources. Hindi and Bangladeshi categorization results unite linguistic studies. Handwriting recognition systems create editable digital documents from touchscreens, electronic pens, scanners, and photographs. Statistical, structural, neural network and syntactic methods improve online and offline recognition. In “english language analysis using pattern recognition and machine learning,” the accuracy of various approaches is examined, showing deep convolution neural networks (DCNN) 98% accuracy in recognizing subtle linguistic patterns. Nave Bayes, a trustworthy language analysis approach, has 96.2% accuracy. Table recognition (TR) algorithms retrieve structured information at 97%. This method outperforms others with 98.4% accuracy. This unique strategy could improve english language analysis using cutting-edge pattern recognition and machine learning techniques.Abstract
How to Cite
Downloads
Similar Articles
- Sujay Bhalchandra, Nilesh D. Shinde, An exploratory study of factors influencing manufacturer-dealer relationship in Indian automobile industry , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Archana Verma, Role of artificial intelligence in evaluating autism spectrum disorder , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Samara Ahmed, Adil E. Rajput, Denial, acceptance and intervention in society regarding female workplace bullying - A mental health study on social media , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Tewoderos Legesse, Bekelech Sharew, Evaluation of white seeded sesame (Sesamum indicium L.) genotypes on growth and yield performance in Menit Goldya Woreda of West Omo Zone, SWE , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Ramalakshmi V, Prioritizing the factors affecting employee relations and its influence on job performance , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- ATANU BHATTACHARYYA, P. S. DATTA, ASIM BHAUMIK, SHASHIDHAR VIRAKTAMATH, MORSHED U. CHOWDHURY, RAJENDRA KUMAR ISAAC, TINY DEVICES- NANO - THE EMERGING WORLD TECHNOLOGY , The Scientific Temper: Vol. 2 No. 1&2 (2011): The Scientific Temper
- K. Akila, Location-specific trusted third-party authentication model for environment monitoring using internet of things and an enhancement of quality of service , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Nisha Rathore, Purnendu B. Acharjee, K. Thivyabrabha, Umadevi P, Anup Ingle, Davinder kumar, Researching brain-computer interfaces for enhancing communication and control in neurological disorders , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Minas M. Ali, Farah H. Alenezi, Nora F. Alfayyadh, Sara Y. Alhassoun, Rahaf M. Alanzi, Waseem Radwan, Conservative esthetic dentistry in Riyadh – Saudi Arabia , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Priya Tiwari, Bharat Kasar, Vibhu Tripathi, Decoding Investor’s behavior in tax saving mutual fund: A multi-item scale for evaluating investors’ category , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
<< < 11 12 13 14 15 16 17 18 19 20 > >>
You may also start an advanced similarity search for this article.