English language analysis using pattern recognition and machine learning
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.3.32Keywords:
Computer text, Handwriting data, OCR, Pattern recognition, Statistical structureDimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Pattern identification and classification in complicated systems are difficult. This study uses optical character recognition (OCR) to digitize handwritten data. OCR segments and categorizes characters using online and offline methods for different input sources. Hindi and Bangladeshi categorization results unite linguistic studies. Handwriting recognition systems create editable digital documents from touchscreens, electronic pens, scanners, and photographs. Statistical, structural, neural network and syntactic methods improve online and offline recognition. In “english language analysis using pattern recognition and machine learning,” the accuracy of various approaches is examined, showing deep convolution neural networks (DCNN) 98% accuracy in recognizing subtle linguistic patterns. Nave Bayes, a trustworthy language analysis approach, has 96.2% accuracy. Table recognition (TR) algorithms retrieve structured information at 97%. This method outperforms others with 98.4% accuracy. This unique strategy could improve english language analysis using cutting-edge pattern recognition and machine learning techniques.Abstract
How to Cite
Downloads
Similar Articles
- Nitin J. Wange, Sachin V. Chaudhari, Koteswararao Seelam, S. Koteswari, T. Ravichandran, Balamurugan Manivannan, Algorithmic material selection for wearable medical devices a genetic algorithm-based framework with multiscale modeling , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Rakhimov S. Bekturdievich, Grave structures of the population of the lower part of the Amudarya in the islamic period (On the example of archeological monuments of IX-XIII centuries) , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Muhammed Jouhar K. K., Dr. K. Aravinthan, An improved social media behavioral analysis using deep learning techniques , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Shaheen Fatima, Priyanka Suryavanshi, Urban slum children in Lucknow: Exploring nutritional status and complementary feeding practices , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Punithavathy E, N. Priya, A resilience framework for fault-tolerance in cloud-based microservice applications , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Desalu Tamirat, Tesfaye Getachew , Worku masho, Zelalem Admasu , Morphological and morphometric features of indigenous chicken in North Shewa zone, Oromia regional state, Ethiopia , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Jayendra K. Singh, Gyan P. Singh, Sanjay K. Singh, Son preference and children sex composition in Uttar Pradesh: An empirical analysis , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Sheena Edavalath, Manikandasaran S. Sundaram, MARCR: Method of allocating resources based on cost of the resources in a heterogeneous cloud environment , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- B. Kalpana, P. Krishnamoorthy, S. Kanageswari, Anitha J. Albert, Machine learning approaches for predicting species interactions in dynamic ecosystems , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- R. Sridevi, V. S. J. Prakash, Load aware active low energy adaptive clustering hierarchy for IoT-WSN , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
<< < 7 8 9 10 11 12 13 14 15 16 > >>
You may also start an advanced similarity search for this article.