Social science education based on local wisdom in forming the character of students
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.3.22Keywords:
Project-based learning, Local wisdom, Social science subjects, Critical thinking, Self-efficacy.Dimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This research was conducted to determine the impact of project-based learning with local wisdom in teaching social science subjects to increase critical thinking ability moderated by students’ self-efficacy. This experimental research employed a quantitative approach utilizing a probability sampling technique with a clustered sampling method to select particular groups within a population. Thus, as a sample, class XI IPS 2 was chosen as a control group and XI IPS 3 as an experimental one. The test results showed that each of the instruments was valid and reliable and met the classical assumptions. The indicated that project-based learning with local wisdom moderated with good self-efficacy can improve critical thinking ability. The integration of project-based learning with local wisdom into learning is necessary so that the methods applied by teachers not only focus on academic results but also inculcate the values of local wisdom. Therefore, it would be better if teachers at every level could integrate an approach to learning that incorporates local wisdomAbstract
How to Cite
Downloads
Similar Articles
- Muhammed Jouhar K. K., Dr. K. Aravinthan, An improved social media behavioral analysis using deep learning techniques , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Sathya R., Balamurugan P, Classification of glaucoma in retinal fundus images using integrated YOLO-V8 and deep CNN , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- S. Udhaya Priya, M. Parveen, ETPPDMRL: A novel approach for prescriptive analytics of customer reviews via enhanced text parsing and reinforcement learning , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- Anita M, Shakila S, Stochastic kernelized discriminant extreme learning machine classifier for big data predictive analytics , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Temesgen A. Asfaw, Deep learning hyperparameter’s impact on potato disease detection , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- N. Saranya, M. Kalpana Devi, A. Mythili, Summia P. H, Data science and machine learning methods for detecting credit card fraud , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- G. Vijayalakshmi, M. V. Srinath, Student’s Academic Performance Improvement Using Adaptive Ensemble Learning Method , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- S. Hemalatha, N. Vanjulavalli, K. Sujith, R. Surendiran, Chaotic-based optimization, based feature selection with shallow neural network technique for effective identification of intrusion detection , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Ankush Wadhwa, Sanjay Nandal, Development of an Index in Social Science: A Systematic Literature Review , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
- Yanbo Wang, Yonghong Zhu, Jingjing Liu, Research on the current situation and influencing factors of college students learning engagement in a blended teaching environment , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.

