Research on the current situation and influencing factors of college students learning engagement in a blended teaching environment
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.3.02Keywords:
Bended learning, Learning engagement, Teaching interaction theory.Dimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Taking students from a university who participate in blended teaching of innovation and entrepreneurship as the research object, a model of the influencing factors of college students’ learning engagement in a blended teaching environment was constructed. This paper constructs a model of influencing factors of college students’ learning engagement in the blended teaching environment. The results showed that individual, teacher, and peer factors all have a certain degree of influence on learning engagement, but the degree of influence is significantly different. Teacher factors have the greatest impact, followed by individual factors, and peer factors have the smallest impact; Environmental factors have a moderating effect on the relationship between individual factors, teacher factors, peer factors, and learning engagement, but the direction of action is not consistent. The positive effect of individual factors, teacher factors, and peer factors on learning engagement increases with the increase of environmental factors, while the positive effect of teacher factors and peer factors on learning engagement weakens with the increase of environmental factorsAbstract
How to Cite
Downloads
Similar Articles
- P. Ananthi, A. Chandrabose, The socio-technical opportunities and threats of crowdsensing , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Harshaben Raghubhai Pankuta, Kusum R. Yadav, Assessing students’ perception of the academic features of the Gyankunj Project , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- AMITESH KUMAR, R.K. VERMA, AN EVALUATION OF SUPER-FLUID DENSITY s AS A FUNCTION OF c T T FOR BCS-BEC CROSSOVER REGIME , The Scientific Temper: Vol. 10 No. 1&2 (2019): The Scientific Temper
- Temesgen Asfaw, Customer churn prediction using machine-learning techniques in the case of commercial bank of Ethiopia , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Elizabeth Mize, A critical analysis of the continuing professional development of teachers in India through the lens of NEP 2020 , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
- Olivia C. Gold, Jayasimman Lawrence, Ensemble of CatBoost and neural networks with hybrid feature selection for enhanced heart disease prediction , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Hannah Ayaba Tanye, Henry Akwetey Matey, Isaac Asampana, Albert Akanlisikum Akanferi, Douglas Yeboah , Augustina Dede Agor, Assessing the information security awareness among Ghanaian University students , The Scientific Temper: Vol. 16 No. 07 (2025): The Scientific Temper
- C. Agilan, Lakshna Arun, Optimization-based clustering feature extraction approach for human emotion recognition , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Deepika S, Jaisankar N, A novel approach to heart disease classification using echocardiogram videos with transfer learning architecture and MVCNN integration , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Archana G, Vijayalakshmi V, Improving classification precision for medical decision systems through big data analytics application , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
<< < 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.

