Integrating machine learning and mathematical programming for efficient optimization of electric discharge machining technique
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.3.46Keywords:
Predictive Modelling, Machining Parameters, Regression Analysis, Electrical Discharge Machining (EDM), Performance OptimizationDimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This study focuses on predictive modeling in machining, specifically material removal rate (MRR), tool wear rate (TWR), and surface roughness (Ra) prediction using regression analysis. The research employs electrical discharge machining (EDM) experiments to validate the proposed unified predictive model. The approach involves varying machining parameters systematically and collecting empirical data. The dataset is split for training and testing, and advanced regression techniques are used to formulate the model. Evaluation metrics such as R-squared and mean-squared error (MSE) are employed to assess the model’s accuracy. Notable findings include accurate predictions for MRR, TWR, and Ra. This approach demonstrates the potential for real-world application, aiding decision-making processes and enhancing machining efficiency. The research underscores the importance of predictive modeling in manufacturing optimization, offering insights into refining model architectures, data preprocessing techniques, and feature selection. The findings affirm the relevance and applicability of predictive modeling in manufacturing, emphasizing its potential to elevate precision and efficiencyAbstract
How to Cite
Downloads
Similar Articles
- Faisal Alsanea, Challenging gender norms in parenting styles and their impact on children’s socialization and identity formation , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Amita Pal, Richa Trivedi, Amit Jain, Sudhir Jain, Diurnal and seasonal variation of GPS-TEC during a low solar activity period at EIA region (Bhopal) , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Bratati Dey, Poonam Sharma, A comprehensive review of urban growth studies and predictions using the Sleuth model , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- P. N. Malleswari, P. V. S. Gupta, S. V. M. Vardhan, D. Ramachandran, Quantitative estimation of ethanol content in eribulin mesylate injection using headspace gas chromatographic with flame ionization detector [HS-GC-FID] , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Suresh L. Chitragar, Occupational Structure of Population in the Malaprabha River Basin, Karnataka State, India; A Geographical Approach , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Sanskriti Gandhi, Usha Asnani, Srivalli Natarajan, Chinmay Rao, Richa Agrawal, Evaluation of stability of fixation using conventional miniplate osteosynthesis in comminuted and non-comminuted Le Fort I, II, III fractures – A dynamic finite element analysis , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Rajni Mathur, Bharti Singh, Anjali Kalse, Veena R. Kolte, Saloni Desai, Sameer Sonawane, Examining the impact of economic cycles on India’s information technology sector , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Ellakkiya Mathanraj, Ravi N. Reddy, Enhanced principal component gradient round-robin load balancing in cloud computing , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- C. S. Manikandababu, V. Rukkumani, Advanced VLSI-based digital image contrast enhancement: A novel approach with modified image pixel evaluation logic , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Prakash Lakhani, Premasish Roy, Souren Koner, Deepa Nair, D. Patil, Mona Sinha, Exploring the influence of work-life balance on employee engagement in Mumbai’s real estate industry , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
<< < 50 51 52 53 54 55 56 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Shaik Khaleel Ahamed, Neerav Nishant, Ayyakkannu Selvaraj, Nisarg Gandhewar, Srithar A, K.K.Baseer, Investigating privacy-preserving machine learning for healthcare data sharing through federated learning , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Ravikiran K, Neerav Nishant, M Sreedhar, N.Kavitha, Mathur N Kathiravan, Geetha A, Deep learning methods and integrated digital image processing techniques for detecting and evaluating wheat stripe rust disease , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Nisha Rathore, Purnendu B. Acharjee, K. Thivyabrabha, Umadevi P, Anup Ingle, Davinder kumar, Researching brain-computer interfaces for enhancing communication and control in neurological disorders , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper

