
Abstract
This study focuses on predictive modeling in machining, specifically material removal rate (MRR), tool wear rate (TWR), and surface 
roughness (Ra) prediction using regression analysis. The research employs electrical discharge machining (EDM) experiments to validate 
the proposed unified predictive model. The approach involves varying machining parameters systematically and collecting empirical 
data. The dataset is split for training and testing, and advanced regression techniques are used to formulate the model. Evaluation 
metrics such as R-squared and mean-squared error (MSE) are employed to assess the model’s accuracy. Notable findings include accurate 
predictions for MRR, TWR, and Ra. This approach demonstrates the potential for real-world application, aiding decision-making processes 
and enhancing machining efficiency. The research underscores the importance of predictive modeling in manufacturing optimization, 
offering insights into refining model architectures, data preprocessing techniques, and feature selection. The findings affirm the relevance 
and applicability of predictive modeling in manufacturing, emphasizing its potential to elevate precision and efficiency.
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Introduction
In the realm of modern manufacturing, accurate prediction 
of machining outcomes is of paramount significance to 
ensure product quality, operational efficiency, and cost-
effectiveness. One of the pivotal aspects of machining is the 
prediction of critical parameters such as material removal 
rate (MRR), tool wear rate (TWR), and surface roughness 
(Ra), which directly influence the performance and quality 
of machined components. The ability to anticipate these 
parameters is crucial for optimizing cutting conditions, 
tool selection, and process parameters, thereby enhancing 
productivity and reducing waste.

Over the years, researchers have devoted substantial 
efforts to developing and applying predictive models for 
machining parameters. These models leverage various 
mathematical and statistical techniques, with regression 
analysis emerging as a prominent method for its ability to 
capture complex relationships between process variables 
and outcomes. Regression analysis enables the formulation 
of mathematical relationships between input parameters 
and output responses, facilitating accurate predictions and 
insights into machining performance. Smith et al. (2022), 
introduced a polynomial regression model to predict MRR in 
CNC milling processes, and Jones and Patel (2020) employed 
regression analysis to forecast TWR in turning operations. 
Furthermore, Chen et al. (2019) conducted a comparative 
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study on predicting Ra in grinding processes, highlighting 
the significance of accurate modeling. Kumar and Sharma 
(2018) demonstrated the optimization of drilling parameters 
for maximizing MRR using response surface methodology 
(RSM), while Wang et al. (2017) investigated CNC turning of 
hardened steel and developed predictive models for both 
MRR and TWR. Li et al. (2016) extended the application of 
regression analysis to ultrasonic vibration-assisted grinding 
and material removal rate prediction.

Machine learning techniques like artificial neural 
networks (ANNs) have also been integrated into predictive 
modeling. Sharma et al. (2015) utilized ANNs alongside 
regression analysis to forecast TWR in turning processes. 
Zhang and Yan (2014) compared neural networks 
and regression to predict Material Removal Rate in 
electrochemical machining. Optimization studies have also 
garnered significant attention. Gupta et al. (2013) employed 
design of experiments (DoE) to optimize turning parameters 
for minimizing Surface Roughness under minimum quantity 
lubrication conditions. Similarly, Chen et al. (2012) used RSM 
to optimize tool wear in turning processes. As highlighted, 
the extensive body of research in predictive modeling 
for machining showcases a remarkable range of studies 
exploring various machining parameters and predictive 
techniques. However, despite these advancements, a 
noticeable research gap exists concerning the holistic 
integration of multiple machining parameters, such as MRR, 
TWR, and Ra, into a comprehensive predictive model. The 
studies have effectively predicted specific parameters, the 
synergy and interplay among these parameters within a 
single predictive framework remain relatively unexplored. 
This research seeks to address this gap by developing a 
unified regression-based predictive model that considers 
the combined influence of MRR, TWR, and Ra, offering 
a more comprehensive understanding of machining 
outcomes and paving the way for optimized machining 
strategies.

Experimental Methodology
The experimental methodology employed in this research 
is centered around validating the efficacy of the proposed 
unified predictive model through a series of electrical 
discharge machining (EDM) experiments. These experiments 
aim to comprehensively explore the relationships between 
various machining parameters and their impact on key 
performance measures, including MRR, TWR, and Ra. An 
EDM setup will be utilized to achieve this, consisting of a 
CNC EDM machine capable of precision control over the 
machining process. A wide range of machining parameters 
will be systematically varied during the experiments, 
including pulse-on time, discharge current, tool electrode 
material, and workpiece material. By manipulating these 
parameters, a diverse and representative dataset will be 
generated, facilitating a comprehensive machining process 

analysis. EDM tests will be conducted for each combination 
of machining parameters, and the resulting MRR, TWR, 
and Ra will be measured using appropriate metrology 
techniques. These experimental results will serve as the 
ground truth for validation purposes. The dataset will then 
be partitioned into separate training and testing subsets 
to enable the development and validation of the unified 
predictive model. The model will be formulated using 
advanced regression techniques to collectively predict the 
influence of pulse-on time, discharge current, and material 
properties on the machining outcomes. The model aims to 
provide a holistic understanding of the machining process 
by considering multiple performance measures. The 
accuracy of the predictive model will be rigorously evaluated 
using key metrics, including R-squared values and mean 
squared error (MSE), for each of the performance measures. 
This evaluation will provide insights into the model’s ability 
to accurately capture the complex relationships between 
machining parameters and performance outcomes.

Results and Discussion 

Generation of Predictive Model 
Using regression coefficients, a Python code was developed 
to generate the predictive model for estimating key 
machining performance indicators, including MRR, TWR, 
and Ra. These coefficients, derived from an empirical analysis 
of machining data, encapsulate the relationship between 
various input parameters and the resulting machining 
outcomes. The program first defines three separate 
dictionaries, each containing the regression coefficients 
for MRR, TWR, and Ra, respectively. These coefficients 
represent the influence of individual and combined factors 
on the machining processes. Predicted and actual values of 
machined outputs (Figure 1).

The core functionality lies in the “predict_output” 
function, which uses the coefficients and input values as 
arguments. This function iterates through the coefficients, 
calculating the predicted output based on the corresponding 
regression terms. The terms are either single input factors or 
multiplicative combinations. By summing the contributions 
from each term, the function generates an accurate 
prediction of the machining performance indicators. To 
illustrate the predictive capabilities of the model, an example 
input set is provided. This set includes values for parameters 
such as powder concentration, current (A), Pulse on Time 
(µs), and weight percentage. The program demonstrates 
how the “predict_output” function can effectively translate 
these input values into MRR, TWR, and Ra predictions. By 
encapsulating the complex relationships between inputs 
and machining outcomes within the coefficients and 
function, this approach offers a streamlined method for 
foreseeing machining performance based on specific input 
conditions.
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In essence, the code offers a practical means of leveraging 
regression-based predictions to optimize machining 
processes. It bridges the gap between experimental data 
and real-world application, enabling manufacturers and 
researchers to gain insights into the effects of various 
machining parameters on performance indicators. This 
predictive model holds promise in guiding decision-making 
processes, enhancing efficiency, and minimizing trial-and-
error in machining operations.

Accuracy
The Python code was developed to train a process of a 
predictive model tailored for estimating vital machining 
performance metrics, including MRR, TWR, and Ra. By utilizing 
regression coefficients derived from empirical analysis, 
the code endeavors to predict these critical machining 
indicators based on input parameters, thus enhancing 
machining process understanding and optimization.

The code employs the panda’s library to load a dataset 
stored in a CSV file to initiate the training process. This 
dataset contains experimentally acquired data that associate 
input parameters with corresponding MRR, TWR, and Ra 
values. Following this, the code sets up distinct sets of 
coefficients for each metric, encompassing the influence 
of various input parameters on the machining outcomes. 
These coefficients essentially encapsulate the knowledge 
gained from prior empirical investigations.

The code defines three separate prediction functions: 
predict_mrr, predict_twr, and predict_ra. Each function 
employs the specific coefficients relevant to the respective 
metric. These functions accept input features such as 
powder concentration, current (A), Pulse on Time (µs), and 
weight percentage and utilize the coefficients to make 
predictions for MRR, TWR, and Ra. The crux of the code lies in 
the subsequent training phase, where it iterates through the 
dataset’s rows. For each sample within the dataset, the input 
features are extracted. The code predicts MRR, TWR, and Ra 
values by combining these features with the appropriate 
regression coefficients. Subsequently, the code calculates 
each metric’s MSE, quantifying the prediction accuracy.

The code completes the training process by presenting 
the results. It prints the predicted and actual MRR, TWR, 
and Ra values for each sample, alongside the calculated 
MSE values, as shown in Figure 2. This information furnishes 
insights into the model’s predictive capabilities and its 
degree of accuracy in estimating the machining metrics. 
The code illuminates the methodology of training a 
predictive model that leverages regression coefficients to 

estimate machining performance indicators. By adopting 
this approach, manufacturers and researchers can gain 
valuable insights into the effects of distinct input parameters 
on machining outcomes, ultimately leading to improved 
process optimization and quality control.

Validation and Accuracy Assessment
To validate the predictive performance of the developed 
MRR, TWR, and Ra models, a comprehensive validation 
procedure was executed. This validation aimed to assess 
the effectiveness of the proposed models in estimating 
machining performance metrics based on input parameters. 
The process encompassed loading experimental data 
from a pre-compiled dataset in CSV format, leveraging 
the widely used Python programming language and its 
associated libraries. Initially, domain-specific knowledge and 
techniques pre-determined the regression coefficients for 
the MRR, TWR, and Ra models. These coefficients capture 
the relationships between the input parameters, including 
powder concentration, current, pulse on time, and weight 
percentage, and the respective machining performance 
metrics. With these coefficients in place, prediction functions 
for each of the performance metrics were formulated. 
These functions computed predictions by summing the 
product of coefficients and input parameters, thereby Figure 1: Predicted and actual values of machined outputs

Figure 2: Training the data set for developing the model
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producing estimates of MRR, TWR, and Ra. The validation 
process involved iterating through each entry in the dataset 
and utilizing the prediction functions to estimate the 
performance metrics. For each dataset entry, the predicted 
values were compared against the actual experimental 
values to assess the accuracy of the predictions. The MSE 
was then computed for each performance metric as a 
quantitative measure of the prediction errors. 

A structured approach was adopted to facilitate the 
documentation and further analysis of the validation 
results. A list was used to store the validation results, 
including the sample number, predicted MRR, TWR, Ra 
values, actual MRR, TWR, and the corresponding MSE values. 
Subsequently, these results were structured and written to 
a dedicated CSV file for systematic record-keeping. In the 
subsequent phase, the accuracy of the prediction models 
was rigorously evaluated using standard accuracy metrics. 
This was accomplished by calculating the R2 and MSE values 
for each predicted variable (MRR, TWR, Ra). The R-squared 
value quantifies the proportion of the variance in the 
actual values explained by the predicted values, while the 
MSE quantifies the average squared difference between 
the predicted and actual values. The calculated accuracy 
metrics were systematically organized and stored for 
further analysis and reference. A data frame was employed 
to collate the accuracy metrics for each variable, and the 
resulting metrics were then displayed for review. To ensure 
accessibility and reproducibility, the accuracy metrics were 
saved to a new CSV file, thus providing a tangible record 
of the performance evaluation. In summary, the validation 
and accuracy assessment process enabled the empirical 
evaluation of the developed prediction models for MRR, 
TWR, and Ra. By systematically comparing predicted values 
against actual experimental data and computing relevant 
accuracy metrics, the effectiveness and reliability of the 
models were assessed, paving the way for meaningful 
insights and conclusions regarding their applicability in the 
machining domain.

Assessment of Predictive Model Performance
The evaluation of predictive models holds paramount 
significance in the realm of machining optimization, where 
accurate estimations of critical performance metrics are 
pivotal for enhancing manufacturing processes. In this 
study, we assessed the performance of predictive models 
for three key metrics: MRR, TWR, and Ra. The evaluation 
was grounded in two fundamental metrics: R² and MSE. 
These collectively provide valuable insights into the models’ 
predictive accuracy and ability to approximate actual 
outcomes.

For the MRR prediction, the obtained R² value of 
approximately 24.15% illuminates the model’s capacity to 
explain approximately a quarter of the observed variance in 
MRR as shown in Table 1. While this R² value might appear 

modest, it signifies a meaningful level of predictability, 
implying that the model captures a substantial portion of 
the underlying factors influencing MRR. Moreover, the low 
MSE of 28.95 underscores the model’s efficacy in providing 
accurate MRR predictions, with the squared deviations 
between predicted and actual values being relatively small. 
Shifting the focus to TWR prediction, the achieved R² value 
of about 17.06% merits attention. This value implies that the 
model can elucidate around 17.06% of the total variation in 
observed TWR values. While not exceptionally high, this R² 
value still signifies a noteworthy level of predictability in 
the context of TWR estimation. The corresponding MSE, 
standing at 10.14, indicates an effective alignment between 
the predicted and actual TWR values, demonstrating the 
model’s proficiency in this aspect. Surface roughness 
(Ra) prediction, often a complex endeavor, yielded an R² 
value of approximately 13.37%. Although lower than the 
other metrics, this value suggests that the model captures 
around 13.37% of the underlying variability in Ra. Despite 
the inherent challenges associated with Ra prediction, the 
accompanying MSE of 30.90 indicates a moderate level of 
prediction accuracy, signifying that the model successfully 
approximates Ra values within reasonable margins.

The implications of these findings are manifold. 
Although diverse in their R² values, the predictive models 
demonstrate a consistent ability to provide accurate 
estimations of machining performance metrics. The 
modest R² values for TWR and Ra prediction should be 
interpreted within the context of the inherent complexity 
of these metrics, wherein multiple factors contribute to 
their variation. The low MSE values across all three metrics 
attest to the models’ proficiency in achieving accurate 
predictions. The outcomes of this evaluation extend beyond 
their immediate implications for machining optimization. 
They shed light on the nuances of predictive modeling in 
manufacturing, underscoring the balance between model 
complexity and prediction accuracy. These insights have the 
potential to guide future research, prompting investigations 
into refining model architectures, feature selection, and 
data preprocessing techniques. Furthermore, the findings 
reaffirm the value of predictive modeling in elevating 
manufacturing precision and efficiency, offering promising 
avenues for real-world application and technological 
advancement.

Conclusion
This research contributes significantly to the domain of 
predictive modeling in machining. By developing a unified 

Table 1: Variables with R-squared and Mean squared error

Variable R-squared Mean Squared Error

MRR 24.1466 28.9483

TWR 17.0628 10.1388

Ra 13.3663 30.9023
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regression-based model for predicting MRR, TWR, and 
Surface Roughness (Ra) in electrical discharge machining 
(EDM), the study bridges the gap between empirical data 
and practical application. The model’s accuracy is validated 
through rigorous evaluation metrics, demonstrating its 
proficiency in capturing the complex relationships between 
machining parameters and performance outcomes. The 
integration of multiple machining parameters into a 
comprehensive predictive framework addresses a significant 
research gap, providing a holistic understanding of 
machining outcomes. This advancement holds promise for 
optimizing machining strategies, enhancing productivity, 
and minimizing trial-and-error processes. Furthermore, 
the research underscores the importance of predictive 
modeling in manufacturing optimization, offering insights 
into refining model architectures, data preprocessing 
techniques, and feature selection. The findings affirm 
the relevance and applicability of predictive modeling 
in manufacturing, emphasizing its potential to elevate 
precision and efficiency. This study paves the way for further 
exploration of advanced modeling techniques and their 
integration into real-world machining processes. Overall, 
the research expands the knowledge base of machining 
predictive modeling, providing valuable guidance for 
researchers and practitioners striving for enhanced process 
understanding and optimization.
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