Integrating machine learning and mathematical programming for efficient optimization of electric discharge machining technique
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.3.46Keywords:
Predictive Modelling, Machining Parameters, Regression Analysis, Electrical Discharge Machining (EDM), Performance OptimizationDimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This study focuses on predictive modeling in machining, specifically material removal rate (MRR), tool wear rate (TWR), and surface roughness (Ra) prediction using regression analysis. The research employs electrical discharge machining (EDM) experiments to validate the proposed unified predictive model. The approach involves varying machining parameters systematically and collecting empirical data. The dataset is split for training and testing, and advanced regression techniques are used to formulate the model. Evaluation metrics such as R-squared and mean-squared error (MSE) are employed to assess the model’s accuracy. Notable findings include accurate predictions for MRR, TWR, and Ra. This approach demonstrates the potential for real-world application, aiding decision-making processes and enhancing machining efficiency. The research underscores the importance of predictive modeling in manufacturing optimization, offering insights into refining model architectures, data preprocessing techniques, and feature selection. The findings affirm the relevance and applicability of predictive modeling in manufacturing, emphasizing its potential to elevate precision and efficiencyAbstract
How to Cite
Downloads
Similar Articles
- Pratibha Baluni, Priya Kathait, Pankaj Bahuguna, C. B. Kotnala, Rajesh Rayal, Analysis of Riparian Vegetation Diversity at Khanda Gad Stream, Garhwal Himalaya, Uttarakhand, India , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Anjani Kumar Shukla, Sadguru Prakash, Enzymes as Biomarkers of Pollution Stress in Channa punctatus (Bloch 1793) collected from Sawan nallaha, Balrampur, U.P. , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Rahul, Naveen Sharma, Thermosolutal Instability of Couple Stress Rivlin Ericksen Ferromagnetic Fluid with Rotation, Magnetic and Variable Gravity Field in Porous Medium , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- ARVIND MISHRA , 1SHUBHA NIGAM, CPM TRIPATHI, ARSENIC CONTAMINATION OF GROUND WATER IN ENDEMIC AREA OF UTTAR PRADESH: A CASE STUDY , The Scientific Temper: Vol. 2 No. 1&2 (2011): The Scientific Temper
- Alpana Parmar, Ashok Kumar, Arvind Kumar Sharma, LENGTH-WEIGHT RELATIONSHIP OF FRESH WATER FISH LABEO BATA (HAM.) FROM RIVER GHAGHRA , The Scientific Temper: Vol. 8 No. 1&2 (2017): The Scientific Temper
- Rashmi Rani, ROLE OF NEUROTICISM AND EXTRAVERSION FACTORS OF PERSONALITY ON LIFE SATISFACTION IN MARRIED COUPLES , The Scientific Temper: Vol. 8 No. 1&2 (2017): The Scientific Temper
- MRINAL CHANDRA, DEVELOPMENT OF METHOD FOREXTRACTIVE SPECTROPHOTOMETRIC DETERMINATION OF COPPER(II) WITH N-BENZOYL THIOUREATHIOSEMICARBONZONE(MAAPHE) AS AN ANALYTICAL REAGENT , The Scientific Temper: Vol. 8 No. 1&2 (2017): The Scientific Temper
- MRINAL CHANDRA, “SPECTRAL STUDIES & ANTIMICROBIAL STUDIES ON Cu(II) WITH SCHIFF BASE CONTAINING SNS DONOR LIGANDS , The Scientific Temper: Vol. 8 No. 1&2 (2017): The Scientific Temper
- Naghma Khatoon, Equabal Jawaid, ECOLOGY AND PARTIAL RESTORATION OF MONE WETLAND FOR FISH PRODUCTIVITY , The Scientific Temper: Vol. 9 No. 1&2 (2018): The Scientific Temper
- Dharmendra Kumar, Equabal Jawed, SEASONAL ZOOPLANKTON COMMUNITY STRUCTURE OF SHATIYA WETLAND IN GOPALGANJ DISTRICT OF BIHAR , The Scientific Temper: Vol. 9 No. 1&2 (2018): The Scientific Temper
<< < 39 40 41 42 43 44 45 46 47 48 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Shaik Khaleel Ahamed, Neerav Nishant, Ayyakkannu Selvaraj, Nisarg Gandhewar, Srithar A, K.K.Baseer, Investigating privacy-preserving machine learning for healthcare data sharing through federated learning , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Ravikiran K, Neerav Nishant, M Sreedhar, N.Kavitha, Mathur N Kathiravan, Geetha A, Deep learning methods and integrated digital image processing techniques for detecting and evaluating wheat stripe rust disease , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Nisha Rathore, Purnendu B. Acharjee, K. Thivyabrabha, Umadevi P, Anup Ingle, Davinder kumar, Researching brain-computer interfaces for enhancing communication and control in neurological disorders , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper

