Integrating machine learning and mathematical programming for efficient optimization of electric discharge machining technique
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.3.46Keywords:
Predictive Modelling, Machining Parameters, Regression Analysis, Electrical Discharge Machining (EDM), Performance OptimizationDimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This study focuses on predictive modeling in machining, specifically material removal rate (MRR), tool wear rate (TWR), and surface roughness (Ra) prediction using regression analysis. The research employs electrical discharge machining (EDM) experiments to validate the proposed unified predictive model. The approach involves varying machining parameters systematically and collecting empirical data. The dataset is split for training and testing, and advanced regression techniques are used to formulate the model. Evaluation metrics such as R-squared and mean-squared error (MSE) are employed to assess the model’s accuracy. Notable findings include accurate predictions for MRR, TWR, and Ra. This approach demonstrates the potential for real-world application, aiding decision-making processes and enhancing machining efficiency. The research underscores the importance of predictive modeling in manufacturing optimization, offering insights into refining model architectures, data preprocessing techniques, and feature selection. The findings affirm the relevance and applicability of predictive modeling in manufacturing, emphasizing its potential to elevate precision and efficiencyAbstract
How to Cite
Downloads
Similar Articles
- Y. Mohammed Iqbal, M. Mohamed Surputheen, S. Peerbasha, Swarm intelligence-driven HC2NN model for optimized COVID-19 detection using lung imaging , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
- Indrajeet Mishra, Estimation of the covalent binding parameters and the ground state wave functions in complexes doped with vanadyl ion , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Rashmi Chandra, Afroz Alam, Phytochemical Analysis Using X-ray Diffraction Spectroscopy (XRD) and GC-MS Analysis of Bioactive Compounds in Cucumis sativus L. (Angiosperms; Cucurbitaceae) , The Scientific Temper: Vol. 13 No. 01 (2022): The Scientific Temper
- G. Vijayalakshmi, M. V. Srinath, Student’s Academic Performance Improvement Using Adaptive Ensemble Learning Method , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- Neha Chitale, Lajwanti Lalwani, A Bibliometric Analysis of Global Research From 1928 To 2019 On Mobilization with Movement on Functional Disability in Low Back Pain , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- Dimpal Khambhati, Chirag Patel, Analyzing cardiac physiology: ECG ensemble averaging and morphological features under treadmill-induced stress in LabVIEW , The Scientific Temper: Vol. 16 No. 07 (2025): The Scientific Temper
- Dhabha Nehal Hitendrabhai, Sudhakar S, Effect of multidirectional plyometric training along with core strengthening among tennis players on dynamic balance, vertical jump performance and agility , The Scientific Temper: Vol. 16 No. 07 (2025): The Scientific Temper
- Divya R., Vanathi P. T., Harikumar R., An optimized cardiac risk levels classifier based on GMM with min- max model from photoplethysmography signals , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- P S Renjeni, B Senthilkumaran, Ramalingam Sugumar, L. Jaya Singh Dhas, Gaussian kernelized transformer learning model for brain tumor risk factor identification and disease diagnosis , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- M. Balamurugan, A. Bharathiraja, An enhanced hybrid GCNN-MHA-GRU approach for symptom-to-medicine recommendation by utilizing textual analysis of customer reviews , The Scientific Temper: Vol. 16 No. 06 (2025): The Scientific Temper
<< < 10 11 12 13 14 15 16 17 18 19 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Shaik Khaleel Ahamed, Neerav Nishant, Ayyakkannu Selvaraj, Nisarg Gandhewar, Srithar A, K.K.Baseer, Investigating privacy-preserving machine learning for healthcare data sharing through federated learning , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Ravikiran K, Neerav Nishant, M Sreedhar, N.Kavitha, Mathur N Kathiravan, Geetha A, Deep learning methods and integrated digital image processing techniques for detecting and evaluating wheat stripe rust disease , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Nisha Rathore, Purnendu B. Acharjee, K. Thivyabrabha, Umadevi P, Anup Ingle, Davinder kumar, Researching brain-computer interfaces for enhancing communication and control in neurological disorders , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper

