Lung cancer disease identification using hybrid models
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.3.40Keywords:
Lung cancer, Baseline Methods, Diagnostic Capabilities, Mortality RateDimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Using hybrid models, we present a novel method for detecting lung cancer in this study. Our method uses the random forest and convolutional neural network (CNN) techniques to incorporate machine learning and deep learning advantages. The proposed composite method combines structured clinical data with unprocessed imaging data for a more complete lung cancer diagnosis. The CNN component of our hybrid model excels at extracting features from images of lung cancer, while the random forest component excels at capturing complex relationships in structured data. For greater precision and consistency, the results of the two models may be averaged. The hybrid model outperforms the existing methods. The hybrid model acquired an accuracy rate of 98%. Future lung cancer detection will be rapid and accurate due to the hybrid model’s improved performance and decreased inference periods.Abstract
How to Cite
Downloads
Similar Articles
- T. V. Sathe, A. D. Jadhav, Chougale T. M., LIFE TABLE AND INTRINSIC RATE OF INCREASE IN APANTELES AGILIS ASHMEAD, A LARVAL PARASITOID OF DIAPHANIA PULVERULENTALIS (HAMPSON). , The Scientific Temper: Vol. 1 No. 01 (2010): The Scientific Temper
- Regasa Begna, Worku Masho, Wondosan Wondimu, Yaregal Tilahun, Tilahun Bekele, Benyam Tadesse, Haile Negash, Participatory evaluation and demonstration of productive performance of Bovans Brown chicken under village production system in Menit Shasha Woreda, West Omo Zone, Ethiopia , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Nitin Bhone, Nilesh Diwakar, S. S. Chinchanikar, Multi-response optimization for AISI M7 Hard Turning Using the utility concept , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- J. M. Aslam, K. M. Kumar, Enhancing cloud data security: User-centric approaches and advanced mechanisms , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Lavkush Pandey, Trilokinath, Convergence of Bisection Method , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Getasew Mesfin, Isreal Zewide, Abdeta Jembere, Physicochemical Characterization of Vermicompost and its Effect on Acidic Soils in Ethiopia , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Saarumathi R, Ritha W, Impregnable inventory stewardship for a closed loop supply chain besides energy usage, defective production and green investment manoeuvring pentagonal fuzzy number , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper
- Nagendra Kumar Yadav, IMPACTS OF MALATHION ON BIO-CHEMICAL CHANGES IN FRESHWATER FISH CHANNA PUNCTATUS UNDER LABORATORY CONDITIONS , The Scientific Temper: Vol. 9 No. 1&2 (2018): The Scientific Temper
- Naveen Kumar, Renu, Suresh Kumar Gahlawat, Anil Kumar, Vikram Delu, Pooja, Shekhar Anand, Suresh Chandra Singh, Arbind Acharya, Nanoparticles as illuminating allies: Advancing diagnostic frontiers in COVID-19- A review , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Mohamed Azharudheen A, Vijayalakshmi V, Improvement of data analysis and protection using novel privacy-preserving methods for big data application , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.

