Lung cancer disease identification using hybrid models
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.3.40Keywords:
Lung cancer, Baseline Methods, Diagnostic Capabilities, Mortality RateDimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Using hybrid models, we present a novel method for detecting lung cancer in this study. Our method uses the random forest and convolutional neural network (CNN) techniques to incorporate machine learning and deep learning advantages. The proposed composite method combines structured clinical data with unprocessed imaging data for a more complete lung cancer diagnosis. The CNN component of our hybrid model excels at extracting features from images of lung cancer, while the random forest component excels at capturing complex relationships in structured data. For greater precision and consistency, the results of the two models may be averaged. The hybrid model outperforms the existing methods. The hybrid model acquired an accuracy rate of 98%. Future lung cancer detection will be rapid and accurate due to the hybrid model’s improved performance and decreased inference periods.Abstract
How to Cite
Downloads
Similar Articles
- R.B. SHARMA, A.K. SHARMA, DARSHNA SHARMA, SEED BORNE FUNGI OF RATI , The Scientific Temper: Vol. 3 No. 1&2 (2012): The Scientific Temper
- Sanskriti Gandhi, Usha Asnani, Srivalli Natarajan, Chinmay Rao, Richa Agrawal, Evaluation of stability of fixation using conventional miniplate osteosynthesis in comminuted and non-comminuted Le Fort I, II, III fractures – A dynamic finite element analysis , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Milindkumar N. Dandale, Amar P. Yadav, P. S. K. Reddy, Seema G. Kadu, Madhusudana T, Manthan S. Manavadaria, Deep learning enhanced drug discovery for novel biomaterials in regenerative medicine utilizing graph neural network approach for predicting cellular responses , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Nitin J. Wange, Sachin V. Chaudhari, Koteswararao Seelam, S. Koteswari, T. Ravichandran, Balamurugan Manivannan, Algorithmic material selection for wearable medical devices a genetic algorithm-based framework with multiscale modeling , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- R.R. Jenifer, V.S.J. Prakash, Detecting denial of sleep attacks by analysis of wireless sensor networks and the Internet of Things , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Sahaya Jenitha A, Sinthu J. Prakash, A general stochastic model to handle deduplication challenges using hidden Markov model in big data analytics , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- JAY SHANKAR SINGH, D.P. SINGH, R.K GUPTA, GENETICALLY MODIFIED PLANTS : BENEFITS AND ENVIRONMENTAL PROBLEMS , The Scientific Temper: Vol. 2 No. 1&2 (2011): The Scientific Temper
- Deepa S, Sripriya T, Radhika M, Jeneetha J. J, Experimental evaluation of artificial intelligence assisted heart disease prediction using deep learning principle , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- P. Pattunnarajam, Janani G, A. Vijayaraj, Sathiya Priya S, Enhanced routing strategy of wireless sensor network based on fifth generation communication technology , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Sheena Edavalath, Manikandasaran S. Sundaram, Cost-based resource allocation method for efficient allocation of resources in a heterogeneous cloud environment , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
<< < 9 10 11 12 13 14 15 16 17 18 > >>
You may also start an advanced similarity search for this article.

