Content addressable memory for energy efficient computing applications
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.2.30Keywords:
CAM, Associative Memory, Computing, TCAM, Bi-CAM, Low power Memory, CAM Design, Parallel search, RAM.Dimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Content Addressable Memory (CAM) also known as associate memory isa special kind of semiconductor memory device that works differently from conventional Random Access Memory (RAM). A Content Addressable Memory is a memory unit that matches content over a single clock rather than using addresses. Its inherent parallel search mechanism makes it more advantageous than RAM in terms of speed of search operation. Designers aim to reduce two design characteristics: increasing silicon size and power consumption. As the need for CAM increases, the problem of power consumption also increases. Recent research on CAM is concentrated around diminishing power utilization without forfeiting speed or area. The main reason for the high-power consumption in conventional CAM architecture is devoid of control over the voltage on the Match Line recharge and Search Line precharge. A novel CAM architecture is proposed by removing the necessity of the search line recharge and also by introducing a transistor with gate connected to ML_Eval input that act as a control over the search operation. An Extra transistor with gate connected to Mask_Bar decides whether the circuit can be operated as Ternary Content Addressable Memory (TCAM) or Binary Content Addressable Memory (Bi-CAM). This CAM Architecture is found to be power efficient up to 50% due to the control over recharged voltage on ML. It is also inferred that the delay associated with the search operation can be reduced to a certain extent. The proposed CAM architecture is simulated using Cadence Virtuoso IC 6.1.6 in General Process Design Kit (GPDK) with90nm technology.Abstract
How to Cite
Downloads
Similar Articles
- Vaibhav, Raj K Tiwari, Low power three-stage OTA using reverse nested frequency compensation without nulling resistor , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Swetha Rajkumar, Jayaprasanth Devakumar, LSTM based data driven fault detection and isolation in small modular reactors , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- K. Mohamed Arif Khan, A.R. Mohamed Shanavas, Energy efficient techniques for iot application on resource aware fog computing paradigm , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- Chandrasekaran M, Rajesh P K, Optimization of cost to customer of power train in commercial vehicle using knapsack dynamic programming influenced by vehicle IoT data , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- K. Vani, S. Sujatha, Fault tolerance systems in open source cloud computing environments–A systematic review , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- V. Baby Deepa, R. Jeya, Dynamic resource allocation with otpimization techniques for qos in cloud computing , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- P. Hepsibah Kenneth, E. George Dharma Prakash Raj, Priority based parallel processing multi user multi task scheduling algorithm , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- P. S. Dheepika, V. Umadevi, An optimized approach for detection and mitigation of DDoS attack cloud using an ensembled deep learning approach , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- L. Vamsi Narasimha Rao, P.S.Prakash, M.Veera Kumari, Improvement of power system operation using a novel hybrid optimization method for optimal allocation of facts devices in radial transmission line , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Vinay Viratia, Sandeep Kumar, Shama Praveen, Tarang Shrivastava, Priyanka, Enhancing Trunk Control Balance in Children with Spastic Diplegic Cerebral Palsy: Comparative Effectiveness of the Vestibular Stimulation Technique and Standard Treatment , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.

