Design of an interactive smart band for intellectually disabled person
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.2.40Keywords:
Intellectual disability, Cognitive functioning, Adaptive behavior, Bluetooth low energyDimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The urge of patient monitoring demands a huge crisis in health care industry. The situation becomes even worse in case of patients suffering from intellectual disability (ID). In such scenario the patient has constraints over adaptive behavior and significant limitation in cognitive functioning and skills which includes communication and self aid. The proposed system monitors the patient’s movements. The system is mainly divided into two parts namely smart band unit and the mobile application unit. The smart band unit is comprised of ESP 32 microcontroller with inbuilt Bluetooth low energy (BLE) module, temperature sensor and accelerometer chip. The mobile application is connected with the BLE module and receives continuous data packets. If the band crosses beyond the Bluetooth connectivity region or if thestrap of the band is removed, then the mobile application is notified with series of alert messages. The system also keeps track of constant temperature survey and any fall detection in case of any abnormal situation by alerting the care taker’s mobile application. Thus the proposed system is aease mechanism ensuring all safety measures and serves the very purpose of patient monitoring crisis.Abstract
How to Cite
Downloads
Similar Articles
- G. Vijayalakshmi, M. V. Srinath, Student’s Academic Performance Improvement Using Adaptive Ensemble Learning Method , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- Pritee Rajaram Ray, Bijal Zaveri, The role of technology in implementing effective education for children with learning difficulties , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- G. C. Sowparnika, D. A. Vijula, Modeling and control of boiler in thermal power plant using model reference adaptive control , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- V. Babydeepa, K. Sindhu, Piecewise adaptive weighted smoothing-based multivariate rosenthal correlative target projection for lung and uterus cancer prediction with big data , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Iftikhar A. Tayubi, Mayur D. Jakhete, Spoorthi B. Shetty, Ashish Verma, Mohit Tiwari, S. Kiruba, Sustainable healthcare AI-enhanced materials discovery and design for eco-friendly and biocompatible medical applications , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Neeru Garg, B.R. Jaipal, Harshvardhan Singh, Impacts of anthropogenic activities on the behavior of Indian fox (Vulpes bengalensis) in the Thar desert , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Hashmat Ali, Nishant Soren, Rohit Kumar Ravi, Kunal Kumar, Anjali, Evaluation of Standard Changes in Free Energy During Complexation of p-chlorobenzoylthioacetophenone with Some Bivalent Transition Metals , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- O. Devipriya, K. Kungumaraj, Enhancing cloud efficiency: an intelligent virtual machine selection and migration approach for VM consolidation , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- N. Anbarasi, K. Anitha, S. Hemalatha, A study on energy sum of dominating sets in East Indian states , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
- Rashmi Rani, ROLE OF NEUROTICISM AND EXTRAVERSION FACTORS OF PERSONALITY ON LIFE SATISFACTION IN MARRIED COUPLES , The Scientific Temper: Vol. 8 No. 1&2 (2017): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.

