Analog Circuits Based Fault Diagnosis using ANN and SVM
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.2.19Keywords:
Artificial Neural Networks, Kernel Principal Component Analysis, Support Vector Machine.Dimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
In this study, we provide a technique for identifying analog errors using a neural network and an SVM (SVM). The study's major objective is to produce a trustworthy diagnostic based on a technique that reduces testing durations by resolving the problem of component tolerances.The suggested strategy uses an artificial neural network and a backward propagation mechanism. The impact of methods like Principal Component Analysis on feature extraction is discussed in this work. The simulation results show that the technique is effective and efficient for fault identification in tolerant mixed-signal circuits.Abstract
How to Cite
Downloads
Similar Articles
- Neetu Singh, Ravindra Kumar Singh, Acute Toxicity of Sumithion Insecticide on Freshwater Catfish, Clarias batrachus (Linnaeus, 1758) , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Santima Uchukanokkul, Bijal Zaveri, Impact of emerging global educational trends on overseas education programs for aspiring students in South East Asia and South Asia: A decadal analysis , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Swetha Rajkumar, Subasree Palanisamy, Online detection and diagnosis of sensor faults for a non-linear system , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Sachin V. Chaudhari, Jayamangala Sristi, R. Gopal, M. Amutha, V. Akshaya, Vijayalakshmi P, Optimizing biocompatible materials for personalized medical implants using reinforcement learning and Bayesian strategies , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Susithra N, Rajalakshmi K, Ashwath P, Performance analysis of compressive sensing and reconstruction by LASSO and OMP for audio signal processing applications , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- P. Ananthi, A. Chandrabose, Exploring learning-assisted optimization for mobile crowd sensing , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- A. Pappa, P. Muruganantham, A. Nagoor Gani, Properties on semi-ring of fuzzy matrices with compatible norm , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- B. Nivedetha, Water Quality Prediction using AI and ML Algorithms , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- B Bindu, Srikanth N, Haris Raja V, Barath Kumar JK, Dharmendra R, Comparative analysis of inverted pendulum control , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- T. Kanimozhi, V. Rajeswari, R. Suguna, J. Nirmaladevi, P. Prema, B. Janani, R. Gomathi, RWHO: A hybrid of CNN architecture and optimization algorithm to predict basal cell carcinoma skin cancer in dermoscopic images , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
<< < 45 46 47 48 49 50 51 52 53 > >>
You may also start an advanced similarity search for this article.

