
Abstract
In this study, we provide a technique for identifying analog errors using a neural network and an SVM (SVM). The study’s major objective 
is to produce a trustworthy diagnostic based on a technique that reduces testing durations by resolving the problem of component 
tolerances.The suggested strategy uses an artificial neural network and a backward propagation mechanism. The impact of methods 
like Principal Component Analysis on feature extraction is discussed in this work. The simulation results show that the technique is 
effective and efficient for fault identification in tolerant mixed-signal circuits.
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Introduction
Over a few decades, electronic technology advancements 
increased and became a significant research issue. Reducing 
the size of the devices in terms of reducing the size of the 
circuits becomes laborious when considering the idea that 
‘’little things are beautiful.’’ Analog, digital, and mixed-signal 
circuits are the three types of electronic circuits. Research 
on analog defect diagnosis has been ongoing, with enough 
work done at the circuit, chip, and system levels (Liu, 2012; 
Sun, 1989). Automated fault diagnosis and classification 
procedures can increase effectiveness and reliability by 
quickly identifying and isolating system flaws.

Pattern recognition, signal processing, image analysis, 
and other applications have all made use of artificial neural 
networks (ANNs) (Spina & Upadhyaya, 1992; He et al., 1998). 
The advantages of ANNs include online computing, robust 
adaptive training, parallel storage, and large-scale parallel 
processing. They work wonderfully for fault detection in 
sensitive analogue circuits (He et al., 1998).

The Support Vector Machine is an effective method 
when dealing with non-linear classification and function 
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estimation problems. The non-linear classification can be 
employed to distinguish between the response vectors of 
healthy and unhealthy circuits. Because prior knowledge of 
the responses from the Circuit under Test is not required, 
less time and memory are used. Nevertheless, it entails 
a quadratic programming assignment, which raises the 
computing difficulty.

The data set needed for testing in this study is gathered 
using Pspice software from the Monte-Carlo analysis. 
Kernel Principal Component Analysis (KPCA) is applied as 
a preprocessing step to the assembled dataset to generate 
the most useful features for training and verifying neural 
networks.These ideal features are automatically normalized 
before being fed to the network, which improves the 
features in the data set and increases the training efficiency 
of the neural network and SVM.

This paper’s contents are organized as follows. Section 
2 of this article provides a concise introduction to the KPCA. 
Section III introduces and discusses artificial neural networks 
(ANNs), specifically back propagation neural networks 
(BPNN).Section IV discusses the algorithm used in support 
vector machines. The circuit examples are discussed in great 
depth in Section V. Section VI provides the findings from our 
simulations and studies of the illustrated circuits. In Section 
VI, a conclusion was made.

KPCA
The principal component analysis (PCA) technique is useful 
for de-noising high-dimensional data sets (Bishop, 1995). 
On the other hand, PCA is a linear technique, hence it can’t 
reveal any non-linear patterns in the data. “As a result, non-
linear modifications have been proposed, such as kernel 
principal component analysis (KPCA), which use kernel 
theory to compute the principal components of a data 
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set after its non-linear translation into a high-dimensional 
feature space. Since KPCA involves the implicit translation 
of sample data from an input space to a high-dimensional 
feature space, it is most successfully performed by means 
of kernel techniques and may be viewed as an eigenvalue 
issue of its kernel matrix (Scholkopf et al., 1998; Scholkopf 
& Smola, 2002). Here is how KPCA is currently understood:

Given a setof‘Ɩ’ training samples and a non-linear 
mapping

 For construct a generic covariance 
matrix in the feature space Ƒ, we may do the following:

 
Where, the assumption is then the modified 
covariance matrix R has thefollowing form

We find that a linear expression for each eigenvector of R, 
v may be written as

Where  the expansion coefficients.
 the matrixK 

is defined as

Where  and k ( · , ·) is the kernel 
function corresponding to a given non-linear mapping Φ. 
Calculating the eigen vectors γ1…..γl and eigen values λ1….
λl

 of K, the orthonormal eigen vectors obtained are v1….vl 
corresponding to the m largest eigen values λ1….λp of R as 
follows:

Principal components are extracted using KPCA, which 
involves calculating projections on eigen vectors,vk.=1,...,p 
in feature space Ƒ. For this reason, we’ll assume that there’s 
a test point x with an associated image Φ,x. in Ƒ, then

Where yj is the jth extracted principal component.

Artificial Neural Networks
Data mining, chemical processes, digital circuits, control 
systems, and other areas have effectively used ANNs because 
they offer adaptive pattern classification mechanisms. In 
recent years, ANNs have attracted a great deal of attention 
from numerous scientific disciplines (Yuan et al., 2006;  Yadav 
& Swetapadma, 2014; Aminian et al., 2002) . Regardless 

of conditions, they are still capable of performing robust 
categorization. It can even be overstated how critical it is 
to select the appropriate ANN architecture for a production 
deployment. One of the most popular forms of artificial 
neural networks is the backward propagation neural 
network (BPNN). When used for fault diagnosis and testing, 
neural networks provide important advantages such as 
quick online diagnosis after network training. In comparison 
to conventional classifiers, ANN classifiers also need less 
defect characteristics. Additionally, neural networks are 
capable of categorizing faults at various levels of hierarchy.

Based on how they are trained, artif icial neural 
networks (ANNs) are divided into two types: supervised 
and unsupervised. In the case of the BPNN, we have a 
supervised network. Two or three levels of linking weights 
are used in conventional BPNNs. The typical two-layer 
network is shown in Figure 1. Every hidden layer node is 
linked to some input node; likewise, every hidden layer node 
is connected to some output node. The BPNN will create 
a network topology with no dead ends. Patterns of input 
data must be learned in order to be communicated from 
the input nodes to the output nodes. When the outputs 
are compared, a discrepancy arises between the actual and 
predicted values. Following that, the weights are adjusted 
so that the error is within a predetermined tolerance. Thus, 
this is a supervised learning method because the target 
values are known in advance.

In Figure 1, input  and output
 one common layer definition includes 

both the hidden layer and the output layer. The relation of 
output Oi

(1) and input Oj
(l-1) of layer j is defined as:

Equation (1) can be transformed into

We assume that the initial weight values are uniformly 
distributed between -0.5 and 0.5, and we define the weight 
between the jth neuron of the (k-1)th layer and the ith neuron 
of the kth layer as W i,j,k. In order to get the equation for 
weight adaptation, we have

The following are some of the many benefits of using BP 
neural networks for fault detection with tolerance:

The BP classifier is effective even when there is 
background noise present, allowing for accurate class 
recognition.

A BPNN’s recall capacity and ability to put together the 
full fault characteristics from partial ones are two of its most 
useful capabilities.
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Support Vector Machine
Support Vector Machines (SVMs), an innovative kind of 
machine learning, are responsible for this classification 
job. Finding a hyperplane that exactly separates the two 
d-dimensional sets of data is the major goal. When example 
data is not linearly separable, SVMs map it onto a higher-
dimensional space where it is separable using the concept of 
a kernel-induced feature space”. Overfitting and computing 
issues would likely arise if casting were done in such a space.

The idea that dealing with higher-dimensional space 
indirectly is the main insight behind SVMs. SVMs choose 
the best separating hyperplane to divide data points into 
distinct groups in classification issues. In this context, the 
term ‘’optimal’’ refers to the separating hyperplane’s superior 
statistical learning theory generalization capability for the 
unobserved data points. By resolving the fundamental 
optimization problem, this ideal separation hyperplane is 
produced. A non-linear kernel map’s implicit definition of a 
highly non-linear separation hyperplane, which SVMs create, 
allows them to distinguish between different complex data 
patterns. This feature makes SVMs useful to a wide range 
of significant real-world issues, including breast cancer 
diagnosis and prognosis, face detection, DNA microarray 
analysis, bankruptcy prognosis, and bankruptcy prognosis.

Support vector machine-based intelligent defect 
diagnosis methods can be divided into two phases:
Training stage

• The training sample set should be sorted from most to 
least frequent according to class size..

• Make a training dataset for SVMs; if a k-support vector 
machine is being taught, the dataset is X = {(xi, yi) | yi≥ 
m, yi € (1, k), m € (1, k −1)}

Where k is the total number of class.
• Having a collection of support vectors in hand is useful 

before extracting them.
• To conduct the training of all k-1 SVM, start over from 

the start.
ii. Fault identification phase
• During the learning phase, the support vector machine 

(SVM) is loaded with the training sample dataset set 
(x, y), the Lagrangian coefficient I, and the SVM itself.

• Predict the category of unidentified samples using 
decision-making methods.

Experimental Validation

Example Circuits and Faults
The three-stage bandpass and biquad filters are examined 
here as case studies. Applying inputs and then sampling the 
outputs of every CUT to obtain the correct frequency and 
temporal responses for filters are carried out in accordance 
with the broad guidelines indicated by Yadav & Swetapadma 
(2014). In this circumstance, both single and double faults are 
taken into consideration. Since double faults are more likely 
to happen in real-world applications than other multiple 
errors, the triple and many faults are disregarded. Due to 
the exceptionally high number of fault configurations and 
the complexity of the processing, some double faults are 
also investigated for simplicity purposes and as an example. 
These examples illustrate how to use the KPCA outlined in 
earlier sections to extract useful characteristics from CUTs’ 
response outputs.
Example 1: A 3-stage bandpass filter is used as the first CUT 
by Aminian & Aminian (2002) and Aminianet al., 2002). A 1 
kHz fundamental frequency is achieved with the standard 
values of the components illustrated in Figure 2. Capacitors 
and resistors are assumed to have 5%, 10%, and 10%, 10% 
tolerances. Circuit responses in Figure  2 are non-fault 
because components C1, C2, R2, and R3 all behave normally 
(NF). Before doing feature selection on the sampled data, 
KPCA is used for preprocessing.
Case 1: Single faults: A faulty frequency response is 
produced when one component is more than 50% over or 
below its nominal value while the remaining components 
fluctuate within their tolerances. The 12 fault and non-fault 
classes are obtained by preprocessing these faulty impulse 
responses. The neural network is trained and tested using 
these samples.
Case 2: Double faults:  Two components have abnormally 
high or low values, whereas the other four vary normally 
within their ranges.
Example 2: Biquad Filter: Figure 3 depicts the second 
CUT under investigation, a biquad high-pass filter with 
components set to their nominal values (Sun, 1989). 
Compared to the filter used in Example 1, this one is more 
complicated.
Case 1: For single faults, the 13 classes are as follows: C1↑, 
C1↓, C2↑, C2↓, R1↓, R1↓, R2↑, R2↓, R4↑, R4↓, and non-fault 

Figure 1: BPNN architecture

R6

5.56k

C210n
R12

10k

C4

10n

0

R7

31k

0

R1

15k

R3

10k

U1

OPAMP+

-

OUT

0

0

V2

FREQ = 1khz
VAMPL = 4v
VOFF = 0 0

R11

1k

0

U3

OPAMP

+

-

OUT

0

R9

10k

C110n 0

C3

10nR2

15k

R4

6.56k

R5

10k
U2

OPAMP+

-

OUT

R8

31k

R10

10k

Figure 2: 3-stage bandpass filter
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class (NF), where and respectively denote values that are 
50% higher and lower than the nominal values.
Case 2: Double faults: For the time being, we will define 
double faults as the simultaneous increase or decrease 
of two of the eight components, with the remaining two 
components fluctuating normally within their limits.

Feature Extraction
In this work, relevant CUTs are excited by two different types 
of sources in order to measure the corresponding frequency 
and temporal responses at the outputs of related CUTs. The 
incorrect frequency response is generated when a single 
fault exists in a circuit, such as the single fault in the two 
filters in Figs. 2 and 3, while the remaining components vary 
within their tolerance limits. Faulty frequency responses are 
produced for identical double faults when the values of two 
components are either higher or lower than all components, 
but the other components fluctuate within their tolerances. 
With the aid of the Pspice software, the dataset from 
the Monte-Carlo analysis is gathered, and the frequency 
response values are noted. The massive values from the 
obtained dataset require additional processing for the 
neural network to function. As candidate features, the first 
coefficients of approximation level 1 are chosen. The KPCA 
method from Section 2 is then used to further process the 
potential features in order to isolate the reduced (optimal) 
features that will be utilized to train the neural network. 
Assume that Xi is the input feature, Ti is the matching output 
vector, and the neural network has m output neurons. The 
1-of-m coding system determines the output values. When 
the input feature Xi corresponds to fault class l, where m is 
the number of fault classes, the resulting vector Ti will have 
components. In these instances, the neural network always 
assigns input features to the defect class with the highest 
likelihood. In a neural network, the number of input nodes 
and output neurons are set in advance, depending on the 
nature of the job at hand. An empirical formula is used to 
determine how many hidden neurons are present. In order 
to calculate the number of hidden neurons, h, we need to 
assume that there are n input nodes and m output nodes.

Tanh and linear functions are always chosen as the hidden 
and output layers’ respective activation functions in neural 
networks.

Simulation Results
Research has been into leveraging the techniques discussed 
in the preceding sections to diagnose problems in the 
analogue circuits shown in Figures 2 and 3. Each fault class 
has a training set of 10 circuits and a testing set of 10 circuit. 
To be more precise, the training set for the suggested 
neural network is formed by selecting 10 training samples 
at random from each class. The trained neural network’s 
adaptability capacity is tested, and the performance of the 
classifier is assessed, using the remaining 10 testing samples. 
Only 97% of classifications are correctly performed by the 
neural network with 4 inputs, 6 hidden neurons, and 8 
output neurons, resulting in 192 configurable parameters. 
On the other hand, our suggested neural network achieves 
99% classification accuracy. In comparison to the study by 
Aminian et al. (2002), our suggested approach for diagnosing 
faults can significantly simplify the network structure, 
reduce the computational load significantly, and effectively 
increase fault detection performance. Furthermore, our 
suggested diagnostic system achieves approximately the 
same diagnosis performance as the approach for feature 
extraction in the frequency domain and uses three fixed 
features as inputs to neural networks (Yuan et al., 2009).

Table 1 and Table 2 provide a concise comparison of 
the neural network and support vector machine (SVM) 
structures.

Figure 3: Biquad high-pass filter

Table 1: Comparison between ann and svm for bandpass circuit

Parameters Ann Svm

Time for Training 1.5 2

Time for Testing 2.094824 1.123662

Accuracy (%) 99.5556 97.7778

Mean Square Error 0.6761 0.0259

Neural network used Back-propagation -

Function used - Linear Kernel

Table 2: Comparison between Ann and Svm for Biquad Filter

Parameters Ann Svm

Time for Training 1.5 2

Time for Testing 2.14632 1.4580

Accuracy (%) 98.4511 96.5555

Mean Square Error 0.5908 0.0217

Neural network used Back-propagation -

Function used - Linear Kernel
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Conclusion
This work uses KPCA and normalisation as frequency and 
time domain preprocessors to systematically identify flaws 
in analogue circuits.. The study shows that the suggested 
preprocessing techniques significantly affect analog defect 
diagnostics in the choice of the ideal number of pertinent 
features. This results in neural network topologies that are 
of manageable size and have good diagnostic precision 
for different fault classes. The results of the neural network 
and the SVM are compared. According to the analysis and 
findings in this study, the suggested diagnostic system can 
obtain an acceptable classification performance if there is 
no substantial overlapping in these circuits. Additionally, 
this fault diagnosis system can accurately diagnose single 
and multiple faults.
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