Data analysis and machine learning-based modeling for real-time production
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.2.22Keywords:
Machine Learning, Data Analysis, Manufacturing Industry, Real-time data modeling.Dimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This article primarily focuses on data analysis and real time data modelling using linear regression and decision tree algorithm that might make revolutionary prediction on production data. Factual time data points include temperature, load, warning, on all the presented axis are the dependent parameters which be contingent on the changes in the autonomous paraments like load. Monitoring and innovative prediction is very much needed in industry as there are recurrent load changes that would create an data drift and in term of maintenance that could impact the production side as need of continues monitoring and control machine learning based approaches would work better on these real time production datasets.Abstract
How to Cite
Downloads
Similar Articles
- Veena Grace Carmel, Correlative Analysis of Cryptocurrencies and Stocks from Asset and Investment Perspective , The Scientific Temper: Vol. 16 No. 09 (2025): The Scientific Temper
- Akila L, Comparative study on Datafication and Digitization , The Scientific Temper: Vol. 16 No. 09 (2025): The Scientific Temper
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- S. C. Prabha, P. Sivaraaj, S. Kantha Lakshmi, Data analysis and machine learning-based modeling for real-time production , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper

