Online detection and diagnosis of sensor faults for a non-linear system
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.1.27Keywords:
Fault, Sensor fault, Extended Kalman Filter, Wind turbine, Linear Quadratic Regulator.Dimensions Badge
Issue
Section
In systems, the fault is an internal occurrence. It becomes a failure if the defect is not detected and corrected. Sensors have been widely employed as a vital component of data collection systems, particularly in the industrial and agricultural sectors. Sensors are prone to failure due to their harsh operating environment. As a result, early detection of sensor faults is crucial for taking corrective action to reduce the impact. In this paper, faults in generator speed and wind turbine velocity have been investigated. The Extended Kalman Filter is utilized to identify the sensor faults in wind turbine model. The residual generation is used to detect the fault. The residual is the discrepancy between the real and estimated outputs. A Linear Quadratic Regulator controller is used for the stabilization of an unstable system.Abstract
How to Cite
Downloads
Similar Articles
- L. Amudavalli, K. Muthuramalingam, Energy-efficient location-based routing protocol for wireless sensor networks using teaching-learning soccer league optimization (TLSLO) , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Viji Parthasarathy, Manikandasaran S S, Feature Selection Techniques for IOT Crop Yield Prediction Using Smart Farming Sensor Data , The Scientific Temper: Vol. 17 No. 01 (2026): The Scientific Temper
- Amudavalli L, K. Muthuramalingam, Integrated energy-efficient routing and secure data management for location-aware wireless sensor networks with PFO leveraged improved fuzzy unequal clustering algorithm (IFUC) , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- R.R. Jenifer, V.S.J. Prakash, Detecting denial of sleep attacks by analysis of wireless sensor networks and the Internet of Things , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- M. Prabhu, A. Chandrabose, Optimization based energy aware scheduling in wireless sensor networks , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- S. Deepa, I.S. Arafat, M. Sathya Priya, S. Saravanan, An improved spectrum sharing strategy evaluation over wireless network framework to perform error free communications , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- N. Suresh Kumar, S.N.Md. Assarudeen, Solving neutrosophic multi-objective linear fractional programming problem using central measures , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- M. Iniyan, A. Banumathi, Brower blowfish nash secured stochastic neural network based disease diagnosis for medical WBAN in cloud environment , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- A. Jafar Ali, G. Ravi, D.I. George Amalarethinam, AI-Integrated Swarm-Powered Self-Scheduling Routing for Heterogeneous Wireless Sensor Networks to Maximize Network Lifetime , The Scientific Temper: Vol. 16 No. 12 (2025): The Scientific Temper
- K. Akila, Location-specific trusted third-party authentication model for environment monitoring using internet of things and an enhancement of quality of service , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Swetha Rajkumar, Jayaprasanth Devakumar, LSTM based data driven fault detection and isolation in small modular reactors , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper

