Estimation of the covalent binding parameters and the ground state wave functions in complexes doped with vanadyl ion
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.2.32Keywords:
Electron Paramagnetic Resonance; binding parameters; spin-orbit interaction; spin-Hamiltonian; fermi contact term; hyperfine interaction parameter; parametric angle.Dimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
In octahedral complexes doped with transition metal ions the Steven’s model has been used for computing the covalent binding parameters. This model is further used for interpreting the g-factors in various single crystals containing paramagnetic VO2+ ion. Theoretical expressions were given for the g-factors of Vanadyl ions in the crystalline field of cubic nature with components of tetragonal symmetry. The g-factors have been given in terms of covalent binding parameters || and taking into account the tetragonal crystalline field and covalent binding. Computations show that should be less than 0.064 in order to fit the experimental g-values. Using crystal field theory, the ground state wave functions (GSWF) for VO2+ ions in different single crystals has been determined. It is found that GSWF is in dxy state with slight admixture of excited states dx2-y2, dxz and dyz. The hyperfine interaction parameter P and Fermi contact term X have also been calculated.Abstract
How to Cite
Downloads
Similar Articles
- Charu Tyagi, Yougesh Kumar, Anju Panwar, Experimental Ascaridiasis Induced Immunosuppression in WLH Chicks: Biochemical Parameters , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- M. Monika, J. Merline Vinotha, A resilient supply chain model integrating demand variability and carbon emissions in imperfect production systems , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper
- Kumari Neha, Amrita ., Quantum programming: Working with IBM’S qiskit tool , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Anita M, Shakila S, Stochastic kernelized discriminant extreme learning machine classifier for big data predictive analytics , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Y. Mohammed Iqbal, M. Mohamed Surputheen, S. Peerbasha, A COVID Net-predictor: A multi-head CNN and LSTM-based deep learning framework for COVID-19 diagnosis , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
- Merina Yasmin, Chaitali Kundu, Monalisha Paul, Sandip Kumar Sinha, Ameliorative efficacy of aqueous extract of clove bud (AEC) against smokeless tobacco product induced antioxidative damages: An experimental study on male albino rat , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- Charu Tyagi, Anju Panwar, Yougesh Kumar, Experimental Ascaridiasis Induced Changes in Haematological Parameters in WLH Chicks , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- V. Mahalakshmi, M. Manimekalai, Location Specific Paddy Yield Prediction using Monte Carlo Simulation incorporated Long Short-Term Memory , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- M. Monika, J. Merline Vinotha, Optimization of a Lean Vendor–Buyer Supply Chain Model under Neutrosophic Fuzzy Environment with Transportation, Loading, and Unloading Considerations , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- Mohanapriya Jayapal, Hema Jagadeesan, Plant-microbe-dye interaction during rhizoremediation , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
<< < 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.

