To Monitor Real-time Temperature and Gas in an Underground Mine Wireless on an Android Mobile
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2022.13.2.02Keywords:
Mines, Quartz Sensor, Gas Sensor, Instrumentation System, PIC Microcontroller, WIFI Module, Android mobileDimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
In an underground mine there are temperature variations as well as toxic gases are released which cause potential hazards for mine workers. Hence it is necessary to monitor and assess these parameters well in advance for the safety of mine workers. This research paper discusses the concept of real-time monitoring and assessing temperature and toxic gases which are released from underground mines. Methane (CH4) and Carbon Monoxide (CO) are the most prominent gases released in a typical underground mine. For precise detection of temperature variations and ppm values of gases; sensors can be used. This research work is an effort toAbstract
develop an instrumentation system built around PIC Microcontroller using Quartz Sensor / Crystal, for precise detection of temperature variations as well as Gas sensors for precise detection of Methane (CH4) and Carbon Monoxide (CO). Individual gas sensors are used to detect these gases, their corresponding ppm values are also measured. The temperature value being measured as well as the ppm values of these toxic gases are then transmitted wirelessthrough an WIFI module and displayed on an Android mobile.
How to Cite
Downloads
Similar Articles
- Sivakumar S, Rajasekaran Kondareddy, Kalyani Ayyemperumal, Building SaaS solutions using microsoft azure for achieving safe and secure tax related software , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- B Bindu, Srikanth N, Haris Raja V, Barath Kumar JK, Dharmendra R, Comparative analysis of inverted pendulum control , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Rahul, Naveen Sharma, Thermosolutal Instability of Couple Stress Rivlin Ericksen Ferromagnetic Fluid with Rotation, Magnetic and Variable Gravity Field in Porous Medium , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Shivali Kundan, Neha Verma, Zahid Nabi, Dinesh Kumar, Satellite radiance assimilation using the 3D-var technique for the heavy rainfall over the Indian region , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Anju Panwar, Satyendra Kumar, Charu Tyagi, Charu Tyagi, Yougesh Kumar, Impact of Experimental Immunisation on Leucocyte Count of Clarias batrachus , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- S. L. Nama, M. K. Goyal, G. Rathore, C. Ram, A Coconut Fruit Fossil (Cocos L.) from the Giral Lignite Mine of Akli Formation in Western Rajasthan, India , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- Seema Yadav, Problems and Perspectives in Sustainable Environment in the World: A Legal Study , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- Muruganantham P, Harshavardhan J, Rajesh PK , Neelakrishnan S, Implementation of flexible and customizable free-from mirror heads-up display , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- M. Prabhu, A. Chandrabose, Improving the resource allocation with enhanced learning in wireless sensor networks , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- A. Anand, A. Nisha Jebaseeli, AI-driven real-time performance optimization and comparison of virtual machines and containers in cloud environments , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
<< < 4 5 6 7 8 9 10 11 12 13 > >>
You may also start an advanced similarity search for this article.

