The Effect of Noise Exposure on Cognitive Performance and Brain Activity Patterns
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2021.12.1.24Keywords:
Noise; Cognitive Performance; Attention; Brain Activity; ElectroencephalogramDimensions Badge
Issue
Section
It seems qualitative measurements of subjective reactions are not appropriate indicators to assess the effect of noise on cognitive performance. In this study, quantitative and combined indicators were applied to study the effect of noise on cognitive performance. A total of 54 young subjects were included in this experimental study. The participants’ mental workload and attention were evaluated under different levels of noise exposure including, background noise, 75, 85 and 95 dBA noise levels. The study subject’s EEG signals were recorded for 10 minutes while they were performing the IVA test. The EEG signals were used to estimate the relative power of their brain frequency bands.Abstract
Results revealed that mental workload and visual/auditory attention is significantly reduced when the participants are exposed to noise at 95 dBA level (P < 0.05). Results also showed that with the rise in noise levels, the relative power of the Alpha band increases while the relative power of the Beta band decreases as compared to background noise. The most prominent change in the relative power of the Alpha and Beta bands occurs in the occipital and frontal regions of the brain respectively.
The application of new indicators, including brain signal analysis and power spectral density analysis, is strongly recommended in the assessment of cognitive performance during noise exposure. Further studies are suggested regarding the effects of other psychoacoustic parameters such as tonality, noise pitch (treble or bass) at extended exposure levels.
How to Cite
Downloads
Similar Articles
- Engida Admassu, Classifying enset based on their disease tolerance using deep learning , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- V. Karthikeyan, C. Jayanthi, Advancements in image quality assessment: a comparative study of image processing and deep learning techniques , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Ahmed Mustefa, Efficacy of coffee farmers’ cooperatives in Gimbo Woreda, Kafa Zone, Ethiopia , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- D. Padma Prabha, C. Victoria Priscilla, A combined framework based on LSTM autoencoder and XGBoost with adaptive threshold classification for credit card fraud detection , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Seema Rani Sarraf, S.N. Dubey, STRESS AND ACADEMIC ACHIEVEMENT IN RELATION TO DURATION OF SLEEP AND COURSE , The Scientific Temper: Vol. 8 No. 1&2 (2017): The Scientific Temper
- Dhirender ., HISTOENZYMOLOGICAL OBSERVATIONS ON ACID PHOSPHATASE ACTIVITY IN THE OESOPHAGUS OF HGCL2- TREATED FISH, LABEO ROHITA , The Scientific Temper: Vol. 8 No. 1&2 (2017): The Scientific Temper
- Vikas Yadav, Parul Nangia, Effect of Bisphenol-A Exposure on Activity of Antioxidant Enzymes in Channa punctatus and Alleviation with Vitamin C , The Scientific Temper: Vol. 13 No. 01 (2022): The Scientific Temper
- R. Gomathi, Balaji V, Sanjay R. Pawar, Ayesha Siddiqua, M. Dhanalakshmi, Ravi Rastogi, Ensuring ethical integrity and bias reduction in machine learning models , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- A. SINGH, A. SINGH, P. SINGH, SYNTHESIS AND MOLLUSCICIDAL ACTIVITY OF 6-AMINO-1- ARYLOXYACETO-4-ARYL-5-CYANO-3-METHYL-1, 4, 5, 7- TETRAHYDRO PYRAZOLO[4,5-e]PYRIDINES. , The Scientific Temper: Vol. 10 No. 1&2 (2019): The Scientific Temper
- R. Sridevi, V. S. J. Prakash, Load aware active low energy adaptive clustering hierarchy for IoT-WSN , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.