Sustainable Inventory Model for Temperature-Dependent Deteriorating Products under Condition Monitoring
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2026.17.1.08Keywords:
Inventory Model, Deteriorating Items, Cold-chain Operations, Temperature, Condition Monitoring, Sustainability.Dimensions Badge
Issue
Section
License
Copyright (c) 2026 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Cold-chain inventory processes that handle temperature-sensitive items are still facing issues because of deterioration losses, which have a direct impact on business profitability as well as sustainability. In contemporary logistics network, real-time condition monitoring systems are becoming more prevalent in operational practice; yet, their consequences for stock decision-making are often overlooked in optimization models. This study formulates an inventory model for temperature-dependent deteriorating products under price-sensitive demand, integrating the benefit of continuous monitoring by lowering actual deterioration rate. Optimum price and replenishing actions are derived by solving nonlinear optimization problem. Numerical analysis is performed under various temperature conditions to investigate the financial implications of monitoring-based deterioration reduction. The model is developed and evaluated in PYTHON, showing the reliability of the numerical findings. The results show that continuous monitoring drastically lowers deterioration-induced losses, leading to greater optimum replenishment periods and increased total profit across every temperature levels. This sustainable strategy highlights the importance of data-driven managerial oversight that enhances both resource utilization and cost effectiveness in cold- chain inventory operations.Abstract
How to Cite
Downloads
Similar Articles
- V. Parimala, D. Ganeshkumar, Solar energy-driven water distillation with nanoparticle integration for enhanced efficiency, sustainability, and potable water production in arid regions , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Gulshan Makkad, Lalsingh Khalsa, Vinod Varghese, Fractional thermoviscoelastic damping response in a non-simple micro-beam via DPL and KG nonlocality effect , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
- A. Rukmani, C. Jayanthi, Fuzzy optimization trust aware clustering approach for the detection of malicious node in the wireless sensor networks , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Pavithra M, Dr. R. Neelaveni, Muthuraman K. R , Kamalesh G, Design of an interactive smart band for intellectually disabled person , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- R Sharmila, Nikhil S Patankar, Manjula Prabakaran, Chandra M. V. S. Akana, Arvind K Shukla, T. Raja, Recent developments in flexible printed electronics and their use in food quality monitoring and intelligent food packaging , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Pavani Guntaka, M. Changal Raju, Mopuri Obulesu, A numerical study of unsteady MHD free convection flow with heat and mass transfer across an inclined porous plate, taking hall current and dufour effects by FDM , The Scientific Temper: Vol. 16 No. 06 (2025): The Scientific Temper
- Amol Garge, Monika Tripathi, Navigating the virtual frontier: Best practices for ERP implementation in the digital age , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Rustam Gulomov, Khilolakhon Rakhimova, Avazbek Batoshov, Doniyor Komilov, Bioclimatic modeling of the species Phlomoides canescens (Lamiaceae) , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Sachin V. Chaudhari, Jayamangala Sristi, R. Gopal, M. Amutha, V. Akshaya, Vijayalakshmi P, Optimizing biocompatible materials for personalized medical implants using reinforcement learning and Bayesian strategies , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- P. K. MISHRA, S. K. SHARAN, M. K. SINHA, D. CHAKRAVORTY, DETERMINATION OF TEMPERATURE SENSITIVE DIAPAUSE TERMINATION STATE OF DABA TRIVOLTINE ECORACE OF ANTHERAEA MYLITTA DRURY , The Scientific Temper: Vol. 3 No. 1&2 (2012): The Scientific Temper
<< < 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- S. Jerinrechal, I. Antonitte Vinoline, A Deterministic Inventory Model with Automation-Enabled Processes for Defective Item Management , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- M. Deepika, I. Antonitte Vinoline, The Impact of ERP Integration and Preservation Technology on Profit Optimization in Inventory Systems with Shortages and Deterioration , The Scientific Temper: Vol. 16 No. 09 (2025): The Scientific Temper
- S. Jerinrechal, I. Antonitte Vinoline, A vendor-constrained economic production quantity model integrating scrap recovery under sustainability , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper

