Student’s Academic Performance Improvement Using Adaptive Ensemble Learning Method
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.11.03Keywords:
Big data, Ensemble model, Adaptive voting classifier, Machine learning, students’ academic performance.Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Online learning platforms have transformed education by offering flexible, accessible, and interactive learning experiences. With advancements in technology and the increasing need for remote learning, these platforms empower students to study from anywhere at their own pace, offering various resources such as video lectures, assignments, quizzes, and discussion forums. These tools facilitate both self-paced learning and collaborative activities, allowing students to interact with peers, engage in group discussions, and work on joint projects. Big data analytics, in particular, plays a critical role in understanding student behaviour and cognitive processes, providing educators with valuable insights to personalize learning experiences more effectively. This study focuses on analysing student performance on online collaborative platforms through big data analytics, utilizing an ensemble model that integrates multiple Machine Learning (ML) algorithms to predict student outcomes more accurately. The proposed ensemble model achieved an accuracy of 98.87%, outperforming traditional classifiers in both accuracy and precision, particularly in identifying cognitive traits and predicting academic performance. These findings underscore the value of ensemble of ML in big data optimizing student engagement and success.Abstract
How to Cite
Downloads
Similar Articles
- Jhankar Moolchandani, Kulvinder Singh, English language analysis using pattern recognition and machine learning , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Chandrasekaran M, Rajesh P K, Optimization of cost to customer of power train in commercial vehicle using knapsack dynamic programming influenced by vehicle IoT data , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- S. Jerinrechal, I. Antonitte Vinoline, A Deterministic Inventory Model with Automation-Enabled Processes for Defective Item Management , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- G. Deena, K. Raja, M. Azhagiri, W.A. Breen, S. Prema, Application of support vector classifier for mango leaf disease classification , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Pravin P. P, J. Arunshankar, Development of digital twin for PMDC motor control loop , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Deepa Ramachandran VR VR, Kamalraj N, Hybrid deep segmentation architecture using dual attention U-Net and Mask-RCNN for accurate detection of pests, diseases, and weeds in crops , The Scientific Temper: Vol. 16 No. 07 (2025): The Scientific Temper
- D. Jayadurga, A. Chandrabose, Distribution of virtual machines with SVM-FFDM approach in cloud computing , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Panda Aditi Ambarish, Kaushik Trivedi, Immersive learning: A virtual reality teaching model for enhancing english speaking skills , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Fauzi Aldina, Yusrizal ., Deny Setiawan, Alamsyah Taher, Teuku M. Jamil, Social science education based on local wisdom in forming the character of students , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Ganga Gudi, Mallamma V Reddy, Hanumanthappa M, Enhancing Kannada text-to-speech and braille conversion with deep learning for the visually impaired , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
<< < 8 9 10 11 12 13 14 15 16 17 > >>
You may also start an advanced similarity search for this article.

