Clean Balance-Ensemble CHD: A Balanced Ensemble Learning Framework for Accurate Coronary Heart Disease Prediction
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.10.05Keywords:
Coronary Heart Disease (CHD) Prediction, Balanced Ensemble Learning, Preprocessing, Noise Reduction, Prediction AccuracyDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Coronary Heart Disease (CHD) is still one of the leading causes of death worldwide, which necessitates early and reliable prediction methods to support timely medical interventions. Traditional machine learning approaches frequently struggle with noisy and imbalanced datasets which leading to biased predictions and reduced diagnostic reliability. To address these limitations, this paper proposes the CleanBalance-EnsembleCHD algorithm that combines data cleaning, balancing, and ensemble learning to improve prediction accuracy. The goal is to reduce noise, handle imbalance, and combine the strengths of multiple classifiers to detect CHDs more effectively. For noise reduction, the methodology employs Edited Nearest Neighbor (ENN) and Iterative Partitioning Filter (IPF), if imbalance persists Synthetic Minority Oversampling Technique (SMOTE) used. Five classifiers namely Rotation Forest, LogitBoost, Multilayer Perceptron, Logistic Model Trees (LMT), and Random Forest were trained, with the best models chosen for weighted soft-voting ensemble integration. The experimental evaluation on a CHD dataset with an initial class imbalance (maj/min ratio: 1.038, Gini index: 0.4998) revealed significant improvements. After ENN and IPF cleaning, the dataset was reduced from 1011 to 853 balanced instances (class counts: {1.0=414, 0.0=439}). Individual classifiers performed well, with accuracies of 97.36% (Rotation Forest), 94.72% (LogitBoost), 96.04% (Multilayer Perceptron), 97.95% (LMT), and 98.53% (Random Forest). After that, the top three models chosen Random Forest, LMT, and Rotation Forest were combined into an ensemble that outperformed all individual models on the test set, with Accuracy: 99.42%, F1-score: 0.9939, and MCC: 0.9884. These findings show that CleanBalance-EnsembleCHD provides superior predictive reliability leading to noise-resistant and balanced decision-making. Finally, the proposed framework provides a powerful and interpretable solution for early CHD detection using the potential to help clinicians with risk assessment and medical decision support.Abstract
How to Cite
Downloads
Similar Articles
- Raja S, Nagarajan L., Hybridization of bio-inspired algorithms with machine learning models for predicting the risk of type 2 diabetes mellitus , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Rita Ganguly, Dharmpal Singh, Rajesh Bose, The next frontier of explainable artificial intelligence (XAI) in healthcare services: A study on PIMA diabetes dataset , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- Temesgen A. Asfaw, Deep learning hyperparameter’s impact on potato disease detection , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Vaishali Yeole, Rushikesh Yeole, Pradheep Manisekaran, Analysis and prediction of stomach cancer using machine learning , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- Ravikiran K, Neerav Nishant, M Sreedhar, N.Kavitha, Mathur N Kathiravan, Geetha A, Deep learning methods and integrated digital image processing techniques for detecting and evaluating wheat stripe rust disease , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- S Selvakumari, M Durairaj, Performance Analysis of Deep Learning Optimizers for Arrhythmia Classification using PTB-XL ECG Dataset: Emphasis on Adam Optimizer , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- Y. Mohammed Iqbal, M. Mohamed Surputheen, S. Peerbasha, A COVID Net-predictor: A multi-head CNN and LSTM-based deep learning framework for COVID-19 diagnosis , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
- M. Menaha, J. Lavanya, Crop yield prediction in diverse environmental conditions using ensemble learning , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Nisha Patil, Archana Bhise, Rajesh K. Tiwari, Fusion deep learning with pre-post harvest quality management of grapes within the realm of supply chain management , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Temesgen A. Asfaw, Batch size impact on enset leaf disease detection , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.

