Optimization of a Lean Vendor–Buyer Supply Chain Model under Neutrosophic Fuzzy Environment with Transportation, Loading, and Unloading Considerations
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.10.04Keywords:
Lean supply chain, Lead time, Automated truck loading systems, Loading and Unloading, Forklifts, Fuzzy environmentDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
To analyze and justify the impact of automated truck loading system technology on minimizing lead time in warehouse loading and unloading processes for both vendor- buyer in the supply chain. A non-linear lean supply chain model is formulated for a single vendor–buyer system handling a single item, with the inclusion of freight forwarding services. The model explicitly accounts for transportation, loading, and unloading activities under two alternative loading technologies: automated truck loading systems and conventional forklift loading systems. In this framework, lead time is modeled as a function of production, loading and unloading, transportation, and in-transit durations. To reduce total lead time, automated truck loading system technology is incorporated, offering an advanced alternative to traditional forklift operations. Given the inherent uncertainty and variability in real-world supply chain environments, Single-valued Trapezoidal Neutrosophic fuzzy parameters are introduced to better capture imprecision in system parameters. To solve the formulated non-linear problem, the Lagrangian method is employed to derive the optimal solution, thereby enabling decision-makers to evaluate trade-offs between lead time reduction, efficiency, and system flexibility. The proposed model was solved using the prescribed method, and the results show that the total lead time with the incorporation of automated truck loading system technology is 5.834 days, whereas the total lead time with the forklift loading system is 10.46 days. This significant reduction in lead time demonstrates that the automated truck loading system substantially outperforms the conventional forklift loading system, thereby improving overall efficiency and responsiveness in the supply chain. From a managerial perspective, adopting automated loading technology can lead to significant improvements in supply chain efficiency, reduced operational delays, and enhanced responsiveness to customer demand.Abstract
How to Cite
Downloads
Similar Articles
- Shaik Chanbasha, N. Jayakumar, N. Bupesh Kumar, A self-regulating optimization algorithm for locating and sizing a local power generation source for a radial structured distribution system in deregulated environment , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Rajesh Kumar Sharma, Amrendra Jha, ECOLOGICAL SCREENING OF SHATIYA WETLAND IN RELATION TO AGRICULTURAL PRODUCTIVITY , The Scientific Temper: Vol. 9 No. 1&2 (2018): The Scientific Temper
- Archana Bansal, Management of Crop-Residue to Control Environmental Hazards , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Remya Raj B., R. Suganya, A novel and an effective intrusion detection system using machine learning techniques , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Somalee Mahapatra, Manoranjan Dash, Subhashis Mohanty, Adoption of artificial intelligence and the internet of things in dental biomedical waste management , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- S. Sathiyavathi, V. Mathivannan, Selvi. Sabhanayakam, Cd4+ CELL COUNTS IN THE PATIENTS OF HIV INFECTED IN SALEM , The Scientific Temper: Vol. 1 No. 01 (2010): The Scientific Temper
- Nagendra Kumar Yadav, PESTICIDE TOXICITY AND BIOCHEMICAL CHANGES IN FRESHWATER FISHES , The Scientific Temper: Vol. 9 No. 1&2 (2018): The Scientific Temper
- Amita Gupta, A study of the scientific approach inherited in the Indian knowledge system (IKS) , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Kunwar Ananad Singh, Poonam Pandey, ROLE OF ANTHROPOGENIC EMISSIONS IN CLIMATE CHANGE , The Scientific Temper: Vol. 1 No. 01 (2010): The Scientific Temper
- A. Anand, A. Nisha Jebaseeli, A comparative analysis of virtual machines and containers using queuing models , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
<< < 7 8 9 10 11 12 13 14 15 16 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- U. Johns Praveena, J. Merline Vinotha, The multi-objective solid transshipment problem with preservation technology under fuzzy environment , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper
- M. Monika, J. Merline Vinotha, A resilient supply chain model integrating demand variability and carbon emissions in imperfect production systems , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper
- M. Monika, J. Merline Vinotha, A Fuzzy Supply Chain Model Evaluating Energy Management Systems under Imperfect Production and Uncertain Costs , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- U. Johns Praveena, J. Merline Vinotha, A New Approach for Solving Bilevel Fractional/quadratic Green Transportation Problem by Implementing AI with Multi Choice Parameters Under Uncertainty , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- U. Johns Praveena, J. Merline Vinotha, Bilevel Fractional/Quadratic Green Transshipment Problem by Implementing AI traffic control system with Multi Choice Parameters Under Fuzzy Environment , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper

