DAJO: A Robust Machine Learning–Based Framework for Preprocessing and Denoising Fetal ECG Signals
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.9.17Keywords:
Preprocessing, Denoising, Filtering Methods, Segmentation, Feature Extraction, Fetal ECGDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Accurate Fetal Heart Rate (FHR) detection and fetal electrocardiogram (fECG) analysis are vital for early identification of fetal distress. However, clinical fECG signals are often degraded by maternal ECG, baseline drift, powerline interference, and uterine contractions, reducing diagnostic reliability. To address this, the study presents a DAJO, a preprocessing framework that combines Denoising, Adaptive filtering, Joint FHR detection, and Optimized feature extraction. The workflow employs ensemble filters for noise suppression, adaptive filtering to enhance fetal-specific components, and a modified Hamilton–Tompkin’s method for robust FHR estimation. CNN-based feature extraction further ensures compact yet discriminative signal representation. Experimental results demonstrate that DAJO achieves 97% accuracy, 95% precision, 92% recall, 98% specificity, and a 95% F1 score, confirming its effectiveness. This highlights the DAJO as a robust preprocessing solution that preserves physiological integrity while improving automated FHR detection.Abstract
How to Cite
Downloads
Similar Articles
- R. Sridevi, V. S. J. Prakash, Load aware active low energy adaptive clustering hierarchy for IoT-WSN , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- V. Manikandabalaji, R. Sivakumar, V. Maniraj, A framework for diabetes diagnosis based on type-2 fuzzy semantic ontology approach , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Rekha Raghavendra, Shobha Gowda, Jissy Thomas, Fingerprint doorlock system using Arduino uno , The Scientific Temper: Vol. 16 No. Spl-2 (2025): The Scientific Temper
- U. Johns Praveena, J. Merline Vinotha, Bilevel Fractional/Quadratic Green Transshipment Problem by Implementing AI traffic control system with Multi Choice Parameters Under Fuzzy Environment , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- Balaji V, Purnendu Bikash Acharjee, Muniyandy Elangovan, Gauri Kalnoor, Ravi Rastogi, Vishnu Patidar, Developing a semantic framework for categorizing IoT agriculture sensor data: A machine learning and web semantics approach , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Amita Gupta, A study of the scientific approach inherited in the Indian knowledge system (IKS) , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- M. Yamunadevi, P. Ponmuthuramalingam, A review and analysis of deep learning methods for stock market prediction with variety of indicators , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- Mantsha Rayeen, Roshni Sengupta, Sanjay Chaudhary, Short-term changes in lens vault post implantable collamer lens surgery in myopic patients , The Scientific Temper: Vol. 16 No. 07 (2025): The Scientific Temper
- S. Ranganathan, V. Umadevi, FDBSCAN-MBKSched: A Hybrid Edge-Cloud Clustering and Energy-Aware Federated Learning Framework with Adaptive Update Scheduling for Healthcare IoT , The Scientific Temper: Vol. 16 No. 12 (2025): The Scientific Temper
- Vijay Kumar, Priya Thapliyal, Rajesh Rayal, Baljeet Singh Saharan, Arun Kumar, Shweta Sahni, The Molecular Profiling and HCV RNA Quantification to Study the Distribution of Different HCV Genotypes in Accordance to Geographical Condition , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
<< < 7 8 9 10 11 12 13 14 15 16 > >>
You may also start an advanced similarity search for this article.

