Multi-objective Multi-route Soft Rough Sustainable Transportation Problem based on Various Road Maintenance Conditions
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.10.02Keywords:
Soft rough transportation problem, Multi-objective, Multi-route, Road maintenance condition, SustainabilityDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
A heap of transportation problems is communicated and sorted out everyday yet are not prone to hybrid ambiguity tools like soft rough environment. Soft rough transportation parameters amplify the impreciseness particularly with reference to each decision alternative in the supply chain. The intent of this chapter is to conceive a multi-objective soft rough transportation model with multiple distribution routes. To promote green transportation, a sustainability influencing parameter set namely ‘various maintenance condition of roads’ which contain parameters namely good, moderate and no maintenance is chosen. Meanwhile, transportation cost, International Roughness Index (IRI) of road and carbon emission are contemplated as objectives. Each unique element in the parameter set propounds as a soft rough model that is made deterministic using expected operators and then solved using fuzzy goal programming approach in LINGO (19.0). Numerical examples are furnished to evaluate the soft rough models that look up to the preference of decision makers.Abstract
Mathematics Subject Classsifications (2020): 90B06, 90C08
How to Cite
Downloads
Similar Articles
- R. Porselvi, D. Kanchana, Beulah Jackson, L. Vigneash, Dynamic resource management for 6G vehicular networks: CORA-6G offloading and allocation strategies , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Mufeeda V. K., R. Suganya, Novel deep learning assisted plant leaf classification system using optimized threshold-based CNN , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Suprabha Amit Kshatriya, Jaymin K Bhalani, Fire and smoke detection with high accuracy using YOLOv5 , The Scientific Temper: Vol. 16 No. 06 (2025): The Scientific Temper
- Komal Raichura, Asha L. Bavarava, Redefining Classroom Dynamics: AI Tools and the Future of English Language Pedagogy , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- Kumar Sanu, Equabal Jawaid, POND EUTROPHICATION AND FOOD TYPE AS DETERMINANT OF GROWTH AND SURVIVAL IN Clarias batrachus (LINN.) , The Scientific Temper: Vol. 9 No. 1&2 (2018): The Scientific Temper
- S ChandraPrabha, S. Kantha Lakshmi, P. Sivaraaj, Data analysis and machine learning-based modeling for real-time production , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- D. Prabakar, Santhosh Kumar D.R., R.S. Kumar, Chitra M., Somasundaram K., S.D.P. Ragavendiran, Narayan K. Vyas, Task offloading and trajectory control techniques in unmanned aerial vehicles with Internet of Things – An exhaustive review , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Anand Mishra, Manish Kumar Dube, Harnam Singh Lodhi, Ambrina Sardar Khan, Studies on behavior and morphological changes in freshwater fish, Channa punctatus, under the exposure of untreated sewage water , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
- Nalini. S, Ritha. W, Sasitharan Nagapan, Optimal Inventory Policies for Perishable Products Under Demand and Lead Time Uncertainty , The Scientific Temper: Vol. 16 No. 09 (2025): The Scientific Temper
- Ritika Goyal, Payal Thakur, Influence of Entrepreneurial Characteristics on the Performance of MSMEs in Gautam Buddha Nagar , The Scientific Temper: Vol. 17 No. 01 (2026): The Scientific Temper
<< < 12 13 14 15 16 17 18 19 20 21 > >>
You may also start an advanced similarity search for this article.

