The Relationship Between Artificial Intelligence and Consumer Decision Making in the Context of Personalized Cosmetic Products
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.9.10Keywords:
Artificial Intelligence, Consumer Decision-Making, Personalized Marketing, Cosmetic Industry, Digital Literacy, Consumer Trust, Consumer PreferencesDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Artificial intelligence, or AI, creates entirely new dimensions in combining consumer experiences via personal marketing instruments. This objective of the study is to explore the causal relationship between AI-based personalization and consumer behavior within the cosmetics sector. Further, the investigation looks into how AI acceptance and effectiveness in influencing purchase behaviour are dependent on factors such as digital literacy, demographic attributes, and trust. This study used a quantitative method with structured questionnaires, targeting women in Pune who have interacted with AI-based beauty applications. Data were analyzed on SPSS software by applying descriptive statistics, Cronbach’s Alpha for reliability, regression analysis, and ANOVA testing. The findings indicated a significant influence of AI personalization on consumer purchasing intent and trust. Digital literacy and ease of use were crucial for consumer engagement. Ethical and data privacy concerns were some of the barriers to hasty AI acceptance. The tendency of the cosmetic company to encourage and provide customer satisfaction and loyalty in a digital marketplace would be with transparency about ethical artificial intelligence use and user-centric personalization strategies.Abstract
How to Cite
Downloads
Similar Articles
- Brigith Gladys L, J. Merline Vinotha, Sustainable rough multi-objective two-stage solid transportation problem of third-party e-commerce logistic providers with conditional fixed parameter on safety , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper
- Engida Admassu, Classifying enset based on their disease tolerance using deep learning , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- N. Sasirekha, R. Anitha, Vanathi T, Umarani Balakrishnan, Automatic liver tumor segmentation from CT images using random forest algorithm , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Harshaben Raghubhai Pankuta, Kusum R. Yadav, Evaluating the effectiveness of the Gyankunj Project: Teachers’ perceptions from Gujarat , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Suresh L. Chitragar, Measurement of agricultural productivity and levels of development in the Malaprabha river basin, Karnataka, India , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Varsha Kachhela, Jalpa Rank, Charmy Kothari, Screening of environmental bacteria for multiple dye decolorization capabilities in textile wastewater , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Appu A, Does shopping values influence users behavioral intentions? Empirical evidence from Chennai malls , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Rashika R. Singh, Nimish Gupta, G. R. Yadav, Scope of electric vehicles and the automobile industry in Indian perspective , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Roop Kanwal, Children’s literature as a tool for social change: Teaching values and social awareness , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Suresha S, Corporate bonds vis-a-vis bond market: Global economy , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
<< < 25 26 27 28 29 30 31 > >>
You may also start an advanced similarity search for this article.

