The Relationship Between Artificial Intelligence and Consumer Decision Making in the Context of Personalized Cosmetic Products
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.9.10Keywords:
Artificial Intelligence, Consumer Decision-Making, Personalized Marketing, Cosmetic Industry, Digital Literacy, Consumer Trust, Consumer PreferencesDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Artificial intelligence, or AI, creates entirely new dimensions in combining consumer experiences via personal marketing instruments. This objective of the study is to explore the causal relationship between AI-based personalization and consumer behavior within the cosmetics sector. Further, the investigation looks into how AI acceptance and effectiveness in influencing purchase behaviour are dependent on factors such as digital literacy, demographic attributes, and trust. This study used a quantitative method with structured questionnaires, targeting women in Pune who have interacted with AI-based beauty applications. Data were analyzed on SPSS software by applying descriptive statistics, Cronbach’s Alpha for reliability, regression analysis, and ANOVA testing. The findings indicated a significant influence of AI personalization on consumer purchasing intent and trust. Digital literacy and ease of use were crucial for consumer engagement. Ethical and data privacy concerns were some of the barriers to hasty AI acceptance. The tendency of the cosmetic company to encourage and provide customer satisfaction and loyalty in a digital marketplace would be with transparency about ethical artificial intelligence use and user-centric personalization strategies.Abstract
How to Cite
Downloads
Similar Articles
- M. Prabhu, A. Chandrabose, Improving the resource allocation with enhanced learning in wireless sensor networks , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- S ChandraPrabha, S. Kantha Lakshmi, P. Sivaraaj, Data analysis and machine learning-based modeling for real-time production , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Shantanu Kanade, Anuradha Kanade, Secure degree attestation and traceability verification based on zero trust using QP-DSA and RD-ECC , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Merlin Sofia S, D. Ravindran, G. Arockia Sahaya Sheela, Clean Balance-Ensemble CHD: A Balanced Ensemble Learning Framework for Accurate Coronary Heart Disease Prediction , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- Modenisha U, Ritha. W, Fueling Sustainability: A Cost-Benefit Analysis of RDF and Sewage Sludge as Alternative Fuels in Cement Production , The Scientific Temper: Vol. 16 No. 09 (2025): The Scientific Temper
- Akila L, Comparative study on Datafication and Digitization , The Scientific Temper: Vol. 16 No. 09 (2025): The Scientific Temper
- R. Kalaiselvi, P. Meenakshi Sundaram, Unified framework for sybil attack detection in mobile ad hoc networks using machine learning approach , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- G Gayathri Devi, R Radha, Smart alerting services: Safeguarding women and children in the digital age , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Namita R. Behera, A Study on credit facilities of micro, small, and medium enterprises at Syndicate Bank , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Y. Mohammed Iqbal, M. Mohamed Surputheen, S. Peerbasha, Swarm intelligence-driven HC2NN model for optimized COVID-19 detection using lung imaging , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
<< < 5 6 7 8 9 10 11 12 13 14 > >>
You may also start an advanced similarity search for this article.

