Optimization of an Advanced Integrated Inventory Model Considering Shortages and Deterioration across Varying Demand Functions
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.9.03Keywords:
Inventory model, Demand patterns, Shortages, Deterioration, Inventory level, Internet of Things.Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
To determine and emphasize the importance of Internet of Things (IoT)-enabled investment in an inventory model confronted with shortages, storage costs, and deterioration of goods, this study focuses on maximizing maximum stock level while minimizing overall inventory-related expenditures. Conventional inventory models frequently ignore the effect of digital evaluation on sustaining inventory levels and preventing deterioration, resulting in inefficient decision-making. An enhanced inventory model is offered, which uses internet of things (IoT) technology to track inventory factors in real time, hence lowering degradation, shortages and holding costs. To account for the influence of demand fluctuation, three distinct demand structures are investigated: (i) linear price and stock-dependent demand, (ii) a price function with a negative power of a constant, and (iii) an exponential function of price. These demand structures explain several competitive scenarios in which demand is influenced by costs and availability of inventory. To assess the efficacy of the developed IoT-based model, a comparative investigation is carried out under these three demand situations. Secondary data from Abu Hashan Md Mashud’s research are used to support the numerical analysis. Results shows that the maximum inventory level per cycle for the Cases I, II and III are 188.584482, 402.584988, 303.434275 and the total costs for the Cases I, II and III are $1108.00326, $786.214411, $1373.11204 respectively. Amongst the three demand variations, the demand model that involves raising the price to a negative power of a constant outperforms the others, resulting in the highest optimum stock levels. The numerical research’s findings reveal that IoT integration not only improves operational effectiveness, but also leads to a substantial rise in maximum stock level every cycle. The research’s key innovation resides in its integration of IoT technology with inventory models in a variety of demand situations, an approach that has yet to be completely explored in the existing literature. The findings indicate that IoT-based inventory models are exceptionally successful at controlling stock, reducing degradation, and enhancing profitability, particularly when demand follows nonlinear patterns such as the negative power form.Abstract
How to Cite
Downloads
Similar Articles
- Archana Verma, Application of metaverse technologies and artificial intelligence in smart cities , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Archana Verma, Role of artificial intelligence in evaluating autism spectrum disorder , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Azar Bagheri Masoudzade, Maryam Ebrahim Nezhad, Appraising social class dimensions on learning motivation of Iranian students: Family studies and their status in focus , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Sangeeta ., Jitander S. Sikka, Meenal Malik, Static deformation of a two-phase medium consisting of a rigid boundary elastic layer and an isotropic elastic half-space induced by a very long tensile fault , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Parismita Bhagawati, Paramita Dey, Animal cruelty legislation in India: A green criminological exploration , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Raja Selvaraj, Manikandasaran S Sundaram, ECM: Enhanced confidentiality method to ensure the secure migration of data in VM to cloud environment , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Indrani Sengupta, Merilyn Gomes, Unveiling the divide: Analyzing critical thinking skills in literature and commerce students , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Navjot Singh, Sultan Singh, Demographic perception of customers towards dairy marketing practices: An empirical study , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Jhankar Moolchandani, Kulvinder Singh, English language analysis using pattern recognition and machine learning , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Finney D. Shadrach, Harsshini S, Darshini R, Grapevine leaf species and disease detection using DNN , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
<< < 30 31 32 33 34 35 36 37 38 39 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- M. Deepika, I. Antonitte Vinoline, The Impact of ERP Integration and Preservation Technology on Profit Optimization in Inventory Systems with Shortages and Deterioration , The Scientific Temper: Vol. 16 No. 09 (2025): The Scientific Temper

