AT&C and non-technical loss reduction in smart grid using smart metering with AI techniques
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.8.06Keywords:
Smart Grid, Smart Metering, Non-Technical Losses (NTLs), Electricity Theft, Temporal Convolutional Networks (TCN), Light Gradient Boosting Machine (LightGBM), Advanced Metering Infrastructure (AMI), Fraud Detection.Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Aggregate Technical and Commercial (AT&C) damage are a serious issue for electricity distribution companies globally, hindering economic growth and sustainability. Among them, non-technical losses (NTLs), such as electricity theft, fraud, and non-payment, contribute to substantial financial losses and may jeopardize power quality and grid stability. Growing usage of smart grids and Advanced Metering Infrastructure (AMI) opens new ways of effective management of energy, as well as sophisticated approaches to electricity theft, creating demands on cutting-edge methods of detection. This research aims to enhance NTL detection by introducing a hybrid approach that integrates Temporal Convolutional Networks (TCN) and LightGBM, or Light Gradient Boosting Machine. TCNs are used in order to detect complex temporal features in smart meter consumption records, recognizing sequential patterns characteristic of fraudulent behaviour. LightGBM, which is an extremely effective gradient boosting architecture, which is then applied to classify consumption behaviour correctly as normal or suspicious. An real dataset is used to train and evaluate the suggested model of smart meter records, demonstrating its ability to discriminate between normal and potentially fraudulent consumption patterns. Results present promising effectiveness in identifying usual use; however, the research indicates challenges to achieving high accuracy and memory in detecting energy theft. This emphasizes the necessity of further research and model refinement to enhance its effectiveness in real-world applications and to counteract the negative impacts of NTLs on electricity utilities and consumers.Abstract
How to Cite
Downloads
Similar Articles
- Mohit, Rishi Chaudhry, Exploring the landscape of brand extensions: A bibliometric analysis of scholarly trends and insights , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Merla Agnes Mary, Britto Ramesh Kumar, Hybrid GAN with KNN - SMOTE Approach for Class-Imbalance in Non-Invasive Fetal ECG Monitoring , The Scientific Temper: Vol. 16 No. 09 (2025): The Scientific Temper
- Anurag Tripathi, Histoenzymological Distribution of Acetylcholinesterase in the Rostral Mesencephalic Torus Semicircularis and Tegmental Nuclei of an Indian air Breathing Teleost Heteropneustes fossilis , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- Rasheedha A, Santhosh B, Archana N, Sandhiya A, Foot sens - foot pressure monitoring systems , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Krishna P. Kalyanathaya, Krishna Prasad K, A novel method for developing explainable machine learning framework using feature neutralization technique , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Harsh Mineshbhai Shah, A literature-based analysis of studies in urban landscape concept , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Shriram N. Kargaonkar, Sushma Pradeep Chalke, Sunil Mahajan, Statistical Modeling of Consumer Preferences for Eco-friendly Digital Products: A Data-driven Approach Toward Sustainable Consumption in India , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- Jivesh Jha, Sonia D Sharma, Role of law to combat ecological imbalance in Nepal , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Vandana, Ambrish Pandey, Comparative study of delta e of hybrid modulated and digitally modulated screening on different grades of paper , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Rajni Mathur, Bharti Singh, Anjali Kalse, Veena R. Kolte, Saloni Desai, Sameer Sonawane, Examining the impact of economic cycles on India’s information technology sector , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
<< < 28 29 30 31 32 33 34 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Dimpal Khambhati, Chirag Patel, Analyzing cardiac physiology: ECG ensemble averaging and morphological features under treadmill-induced stress in LabVIEW , The Scientific Temper: Vol. 16 No. 07 (2025): The Scientific Temper

