An integrated inventory system for profit maximization considering partial demand satisfaction
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.8.04Keywords:
Inventory system, Shortages, Non deterioration, Enterprise Resource Planning, Profit maximization, Partial demand satisfactionDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
To evaluate and substantiate the importance of investments in enterprise resource planning within an inventory system facing shortages, with the objective of maximizing profit and enhancing operational efficiency and decision-making accuracy. An inventory framework that considers shortages is developed with investments in advanced systems and is examined using two methods, namely with and without enterprise resource planning investments. This study formulates an integrated inventory system and comparative analysis has been made to study the effectiveness of the systems under two categories namely (i) an inventory system under shortages and without the investment of enterprise resource planning and (ii) an inventory system considering shortages and with the integration of enterprise resource planning investment by using secondary data from Umakanta Mishra’s research. A computational example is presented to show the efficiency of the systems under shortages and the results show that the total profit with and without the integration of Enterprise Resource Planning is $290072.873 and $289358.716, respectively. The findings suggest that incorporating investments in Enterprise Resource Planning into an inventory system that accounts for shortages significantly enhances economic performance by optimizing profit and supply chain processes. The efficiency of Enterprise Resource Planning in an inventory system under the consideration of shortages to optimize profit-enhancing operational efficiency is not yet explored in existing literature.Abstract
How to Cite
Downloads
Similar Articles
- S. Deepa, I.S. Arafat, M. Sathya Priya, S. Saravanan, An improved spectrum sharing strategy evaluation over wireless network framework to perform error free communications , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Hariini Chandramohan, Sethu Gunasekaran, Comparative analysis on the photocatalytic activity of titania and silica nanoparticles using dye discoloration and contact angle test , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper
- S. Munawara Banu, M. Mohamed Surputheen, M. Rajakumar, Bio-Inspired and Machine Learning-Driven Multipath Routing Protocol for MANETs Using Predictive Link Analytics , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- MRINAL CHANDRA, DEVELOPMENT OF METHOD FOREXTRACTIVE SPECTROPHOTOMETRIC DETERMINATION OF COPPER(II) WITH N-BENZOYL THIOUREATHIOSEMICARBONZONE(MAAPHE) AS AN ANALYTICAL REAGENT , The Scientific Temper: Vol. 8 No. 1&2 (2017): The Scientific Temper
- Abhishek Dwivedi, Nikhat Raza Khan, Reconfiguration of Automated Manufacturing Systems Using Gated Graph Neural Networks , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Raja Selvaraj, Manikandasaran S. Sundari, EAM: Enhanced authentication method to ensure the authenticity and integrity of the data in VM migration to the cloud environment , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- M. Rajalakshmi, V. Sulochana, Enhancing deep learning model performance in air quality classification through probabilistic hyperparameter tuning with tree-structured Parzen estimators , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Neha Verma, Beyond likes & clicks: Empowering role of social media marketing in value creation , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- C. Agilan, Lakshna Arun, Optimization-based clustering feature extraction approach for human emotion recognition , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- S. Ranganathan, V. Umadevi, FDBSCAN-MBKSched: A Hybrid Edge-Cloud Clustering and Energy-Aware Federated Learning Framework with Adaptive Update Scheduling for Healthcare IoT , The Scientific Temper: Vol. 16 No. 12 (2025): The Scientific Temper
<< < 26 27 28 29 30 31 32 33 34 35 > >>
You may also start an advanced similarity search for this article.

