AI-driven IoT routing: A hybrid deep reinforcement learning and shrike optimization framework for energy-efficient communication
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.8.02Keywords:
Congestion-aware Routing, Deep Reinforcement Learning (DRL), Energy Efficiency, Internet of Things (IoT), Routing Protocols, Shrike Optimization Algorithm (SOA).Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The expansion of Internet of Things (IoT) networks has intensified the need for intelligent and adaptive routing strategies capable of handling frequent topological changes, energy limitations, and application-specific performance requirements. Existing routing protocols often struggle to simultaneously achieve scalability, energy conservation, and reliability. To address these challenges, this paper introduces a novel hybrid routing framework, DRL-SOA, which fuses Deep Reinforcement Learning (DRL) with the Shrike Optimization Algorithm (SOA) to enable real-time, congestion-aware, and energy-efficient routing in IoT environments. The DRL component incrementally learns optimal routing paths by interacting with dynamic network conditions, while SOA enhances the convergence of Q-learning by identifying the most promising action sequences using a nature-inspired hunting mechanism. The proposed method employs a multi-parameter fitness function that considers link stability, link duration, remaining energy, bandwidth availability, and node connectivity to determine optimal routing paths. Extensive simulations using NS-3 demonstrate that DRL-SOA significantly outperforms existing approaches, including RIATA, DRL-IRS, and DOACAR. Notably, the proposed approach achieves up to a 25% increase in network lifespan, reduces routing overhead by 22%, and enhances packet delivery and energy efficiency across different node densities and mobility rates. These results establish DRL-SOA as a scalable and robust routing protocol for next-generation IoT systems.Abstract
How to Cite
Downloads
Similar Articles
- Amresh Kumar Singh, Manjit Singh Chhetri, Pushyamitra Mishra, Toughness and Ductile Brittle Transition Temperature of Different Mineral Filler Reinforced TPOs Composites , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Rustam Gulomov, Khilolakhon Rakhimova, Avazbek Batoshov, Doniyor Komilov, Bioclimatic modeling of the species Phlomoides canescens (Lamiaceae) , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Bayelign A. Zelalem, Ayalew A. Abebe, Evaluating supply chain management practice among micro and small manufacturing enterprise in southwest, Ethiopia , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Aakanksha Laiker, Promil Pande, Contribution of policy and regulations to enhance Transparency and Traceability in the Garment Industry , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Mamatha. N, Ajai Chandran CK, The need to identify challenges for the fire safety evacuation in high-rise buildings in India , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
- N. Yogalakshmi, Awareness on environmental issues and sustainable practices among college students - with special reference to Chennai city region , The Scientific Temper: Vol. 16 No. Spl-2 (2025): The Scientific Temper
- Mallamma V. Reddy, Sachhidanand Sidramappa, Digitization and Recognition of Kannada Inscription Dynasty , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- AMITESH KUMAR, R.K. VERMA, AN EVALUATION OF SUPER-FLUID DENSITY s AS A FUNCTION OF c T T FOR BCS-BEC CROSSOVER REGIME , The Scientific Temper: Vol. 10 No. 1&2 (2019): The Scientific Temper
- Arunima Dey, New gender representation on the Indian OTT platform: A study on web series “Made in Heaven” , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Dimpal Khambhati, Chirag Patel, Analyzing cardiac physiology: ECG ensemble averaging and morphological features under treadmill-induced stress in LabVIEW , The Scientific Temper: Vol. 16 No. 07 (2025): The Scientific Temper
<< < 31 32 33 34 35 36 37 38 39 40 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- R. Rita Jenifer, V. Sinthu Janita, Energy-aware Security Optimized Elliptic Curve Digital Signature Algorithm for Universal IoT Networks , The Scientific Temper: Vol. 16 No. 09 (2025): The Scientific Temper

