Analyzing cardiac physiology: ECG ensemble averaging and morphological features under treadmill-induced stress in LabVIEW
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.7.05Keywords:
cardiac function, R-peak enhancement, ensemble averaging, cardiac rehabilitation, repolarization analysis, amplitude varianceDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This study uses a LabVIEW-based platform to analyze ECG signals in-depth in order to examine the long-term effects of exercise-induced stress on cardiac function. About 25 human subjects participated in a standardized treadmill exercise program that was continued until voluntary exertion. Blood pressure (BP) and heart rate (HR) were measured three times: while at rest, right after exercise, and five minutes after recovery. To assess myocardial workload, the rate-pressure product (RPP) was computed at each stage.Abstract
Under all circumstances, continuous ECG data were recorded, and a specially created LabVIEW interface was used to analyze the waveforms. Important morphological characteristics, such as intervals and segments, as well as P-wave, QRS complex, and T-wave amplitudes, were extracted. R-R interval detection was used to segment each ECG cycle, and multiple cardiac cycles were aligned before being averaged as a group. This method made precise morphological analysis possible by greatly improving R-peak clarity and lowering noise.
R-peak amplitude, QRS duration stability, and T-wave morphology all showed steady improvements over the course of a five-week observational period, suggesting improved cardiac efficiency and recovery adaptation. Waveform variability was significantly reduced, according to amplitude variance analysis conducted before and after averaging. In order to evaluate repolarization abnormalities, derived ratios like R-Q/S-Q/HR and T-Q/R-Q/HR were also examined; trends indicated that exercise conditioning caused normalized repolarization. The signal processing approach demonstrated its dependability in ECG analysis with an overall feature detection accuracy of 90 to 93%.
Particularly in the contexts of cardiac rehabilitation, exercise physiology, and preventive cardiovascular screening, the suggested methodology provides a reliable, non-invasive way to track changes in cardiac function. Its use could include ongoing health monitoring in practical contexts and customized healthcare systems.
How to Cite
Downloads
Similar Articles
- Aruljothi Rajasekaran, Jemima Priyadarsini R., ECDS: Enhanced Cloud Data Security Technique to Protect Data Being Stored in Cloud Infrastructure , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Raja S, Nagarajan L., Hybridization of bio-inspired algorithms with machine learning models for predicting the risk of type 2 diabetes mellitus , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Prabu Gopal, M. Jeyaseelan, Familial support of rural elderly in indian family system: A sociological analysis , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Senthil Murugan C, Vijayabalan Dhanabal, Sukumaran D, Suresh G, Senthilkumar P, Analysis of distributions using stochastic models with fuzzy random variables , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Priyanka P, Sabu Sebastian, Haseena C., Bijumon R., Shaju K., Gafoor I., Sangeeth S. J., Multi-fuzzy set similarity measures using S and T operations , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Thilagavathi K, Thankamani K., P. Shunmugapriya, D. Prema, Navigating fake reviews in online marketing: Innovative strategies for authenticity and trust in the digital age , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Kanwar D Singh, Rashmi Ashtt, Barriers to last mile connectivity: The role of crime in metro station accessibility , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Shivani Goel, Rashmi Ashtt, Monali Wankar, Analyzing the impact of crime on quality of life in Old Delhi: A quantitative approach , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Amanda Q. Okronipa, Jones Y. Nyame, Exploring the effect of perceived empathy and social presence on the intention to use AI in higher education , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- V. Manikandabalaji, R. Sivakumar, V. Maniraj, A framework for diabetes diagnosis based on type-2 fuzzy semantic ontology approach , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
<< < 31 32 33 34 35 36 37 38 39 40 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Jadhav Girish Vasantrao, Chirag Patel, AT&C and non-technical loss reduction in smart grid using smart metering with AI techniques , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper

