Analysis and prediction of stomach cancer using machine learning
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.spl-1.16Keywords:
Stomach Cancer, Prediction system, Cancer, Analysis, stage prediction, survival predictionDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Cancer prediction and analysis systems offer aid in the management of patients and have been found to provide accurate forecasts for stage and survival prediction. This study presents a cancer prediction system developed using machine learning models and implemented with Streamlit. This system is capable of accurately predicting cancer stage onset along with chances of the patient’s onset of survival based on prior patient information. For predictive purposes, categories such as random forest and XGBoost were employed. The model achieved an effective accuracy of 85% for stage prediction and 97% for predictability of patients’ survival. This application includes a simple interface that healthcare professionals can employ to enter patient data and immediately make educated predictions. This paper illustrates the assistance these integrated systems provide clinicians and how they can ameliorate functional healthcare practices. In the future we are hopeful and aim towards further increasing the strength and efficiency of the system by enhancing the dataset used and additional predictive models.Abstract
How to Cite
Downloads
Similar Articles
- Alpana Parmar, Ashok Kumar, Arvind Kumar Sharma, LENGTH-WEIGHT RELATIONSHIP OF FRESH WATER FISH LABEO BATA (HAM.) FROM RIVER GHAGHRA , The Scientific Temper: Vol. 8 No. 1&2 (2017): The Scientific Temper
- Merina Yasmin, Chaitali Kundu, Monalisha Paul, Sandip Kumar Sinha, Ameliorative efficacy of aqueous extract of clove bud (AEC) against smokeless tobacco product induced antioxidative damages: An experimental study on male albino rat , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- Dimpal Kumari, SOME PLANT EXTRACTS AGAINST ANTHRACNOSE INFECTION IN PAPAYA (Carica papaya) , The Scientific Temper: Vol. 9 No. 1&2 (2018): The Scientific Temper
- Ayalew Ali, Sitotaw Wodajio, The effect of risk management on the bank’s financial stability in the emerging economy , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
- Neeraj, Anita Singhrova, A critical review of blockchain-based authentication techniques , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
- Nilam Priyadarshini, Prashant Kumar, ECOLOGICAL STATUS AND PERFORMANCE THROUGH POND ECOSYSTEM WITH PERSPECTIVES FOR FUTURE CONSERVATION , The Scientific Temper: Vol. 9 No. 1&2 (2018): The Scientific Temper
- Y. Mohammed Iqbal, M. Mohamed Surputheen, S. Peerbasha, Swarm intelligence-driven HC2NN model for optimized COVID-19 detection using lung imaging , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
- Sachi Kumari, Amrendra Kumar Jha, STUDY ON DIVERSITY OF RICE FIELD BLUE-GREEN ALGAE FROM RICE FIELD OF CHAPRA IN BIHAR , The Scientific Temper: Vol. 9 No. 1&2 (2018): The Scientific Temper
- Bhavesh Parekh, Parthiv Patel, Unravelling Indianness in R.K. Narayan’s novels: A multidisciplinary exploration of culture, tradition and modernity , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
- Suman Saurabh, Prashant Kumar, CLIMATE CHANGE EFFECTS ON AQUATIC ECOSYSTEM: STRUCTURE AND DISEASE , The Scientific Temper: Vol. 9 No. 1&2 (2018): The Scientific Temper
<< < 30 31 32 33 34 35 36 37 38 39 > >>
You may also start an advanced similarity search for this article.

