Advancements in sentiment analysis – A comprehensive review of recent techniques and challenges
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.spl-1.09Keywords:
Sentiment analysis, Machine learning, Deep learning, Aspect analysis, Emotion Detection, Fine-grained Sentiment analysisDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
In an increasingly digital world, opinions and emotions expressed across a variety of online platforms, when analyzed,propose immense potential for businesses, governments, and organizations. Sentiment analysis includes a collection of techniques that provide a fast and efficient way to classify user comments and derive meaningful information. Though sentiment analysis has been in practice for quite some time, there is a significant advancement in terms of approaches used because of increasing amounts of available data in various forms, including text, requirement of contextual understanding, business needs, etc. This article provides a comprehensive review of the latest advancements in sentiment classification in terms of scope, techniques and challenges. This literature review presents a good insight into the classification of various approaches in sentiment analysis and comparative analysis of different techniques. It also highlights the challenges in terms of the research gap and proposes future directions.Abstract
How to Cite
Downloads
Similar Articles
- Lakshminarayani A, A Shaik Abdul Khadir, A blockchain-integrated smart healthcare framework utilizing dynamic hunting leadership algorithm with deep learning-based disease detection and classification model , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Adedotun Adedayo F, Odusanya Oluwaseun A, Adesina Olumide S, Adeyiga J. A, Okagbue, Hilary I, Oyewole O, Prediction of automobile insurance fraud claims using machine learning , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Raja S, Nagarajan L., Hybridization of bio-inspired algorithms with machine learning models for predicting the risk of type 2 diabetes mellitus , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Kinjal K. Patel, Kiran Amin, Predictive modeling of dropout in MOOCs using machine learning techniques , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Roshni Kanth, R Guru, Anusuya M A, Madhu B K, A comprehensive study of AI in test case generation: Analysing industry trends and developing a predictive model , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- Mudassir Peeran A, A.R. Mohamed Shanavas, A Hybrid Post-Quantum Cryptography and Machine Learning and Framework for Intrusion Detection and Downgrade Attack Prevention throughout PQC Migration , The Scientific Temper: Vol. 17 No. 01 (2026): The Scientific Temper
- A. Sathya, M. S. Mythili, MOHCOA: Multi-objective hermit crab optimization algorithm for feature selection in sentiment analysis of Covid-19 Twitter datasets , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Syed Amin Jameel, Abdul Rahim Mohamed Shanavas, Deep-Ultranet: Diabetic Retinopathy Grading System Using Ultra-Widefield Retinal Images , The Scientific Temper: Vol. 16 No. 12 (2025): The Scientific Temper
- Ganga Gudi, Mallamma V Reddy, Hanumanthappa M, Enhancing Kannada text-to-speech and braille conversion with deep learning for the visually impaired , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- Muhammed Jouhar K. K., Dr. K. Aravinthan, An improved social media behavioral analysis using deep learning techniques , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.

