Fractional thermoviscoelastic damping response in a non-simple micro-beam via DPL and KG nonlocality effect
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.4.18Keywords:
Thermoviscoelastic, Relaxation time, Non-Fourier effect, Damping, Non-local, Heat source, Non-simple micro-beam, Inverse quality factor.Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This study introduces a novel framework for investigating thermoelastic damping (TED) in viscoelastic micro-scale rectangular beams using the Euler-Bernoulli beam theory (EBBT). A two-temperature thermoviscoelastic model is developed, uniquely integrating non-Fourier effects and fractional-order parameters through a generalized thermoelasticity approach with an internal heat source and the dual-phase-lag (DPL) thermal conduction model. This innovative approach addresses the limitations of classical models by incorporating size-dependent effects and spatially varying thermal properties, providing new insights into thermal-mechanical coupling in micro-scale systems. Explicit formulas are derived for the inverse quality factor and frequency shifts, with the study comprehensively analyzing the influence of parameters such as beam thickness, aspect ratios, end constraints, relaxation constants, and fractional-order parameters. Novel findings reveal critical thickness ranges and phase-lag effects that govern energy dissipation and system dynamics. The results highlight the divergence from existing models, emphasizing the importance of nonlocal and fractional-order frameworks for accurately predicting damping and frequency behavior. Practical applications of the study include the optimization of micro-electromechanical systems (MEMS), nano-scale resonators, sensors, and energy-harvesting devices. By bridging theoretical advancements with tangible engineering solutions, this research provides a robust foundation for future exploration in thermal management and micro-scale system design, marking a significant contribution to the field. Graphical representations illustrate the effects of temperature discrepancy factors on damping and frequency shifts in non-simple micro-beams, offering a comprehensive understanding of the interaction between thermal and mechanical responses.Abstract
How to Cite
Downloads
Similar Articles
- Vinodini R, Ritha W, Sasitharan Nagapan, The green inventory model for sustainable environment that includes degrading products and backordering with integration of environmental cost , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper
- Sadguru Prakash, QUANTIFICATION OF FLUORIDE IN DRINKING WATER OF RURAL AND URBAN AREAS OF BALRAMPUR DISTRICT, U. P., INDIA , The Scientific Temper: Vol. 1 No. 01 (2010): The Scientific Temper
- Priya Sharma, Jyoti Rana, Understanding Customer Awareness and effectiveness of Social Media Marketing in Banks , The Scientific Temper: Vol. 16 No. 09 (2025): The Scientific Temper
- U. Johns Praveena, J. Merline Vinotha, Bilevel Fractional/Quadratic Green Transshipment Problem by Implementing AI traffic control system with Multi Choice Parameters Under Fuzzy Environment , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- S. Jerinrechal, I. Antonitte Vinoline, A Deterministic Inventory Model with Automation-Enabled Processes for Defective Item Management , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- Pallavi M. Shimpi, Nitin N. Pise, Comparative Analysis of Machine Learning Algorithms for Malware Detection in Android Ecosystems , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- Aditi Sharma, Atal Bihari Bajpai, Naina Srivastava, Yunus Ali, Anjali Thapa, Naveen Gaurav, Arun Kumar, Effect of Growth Regulators and in vitro Clonal Propagation of Adhatoda vasica , The Scientific Temper: Vol. 13 No. 01 (2022): The Scientific Temper
- Swati Sing, Rimjhim Sharma, Supriya Joshi, Ganji Purnachandra Nagaraju, Sharad Vats, Afroz Alam, Phytochemical Profiling of a Common Moss Hyophila involuta Jaeger. for its Bioactive and Antioxidant Potential Against Viral Infections , The Scientific Temper: Vol. 13 No. 01 (2022): The Scientific Temper
- B Supraja, B Ramachandra, N Venkatasubba Naidu, Analytical Method Development and Validation Analysis for Quantitative Assessment of Thifluzamide by HPLC Procedure , The Scientific Temper: Vol. 13 No. 01 (2022): The Scientific Temper
- Anjum Parvez, Sandhya Verma, Rajesh Bahuguna, Scientific Methods in Protection of Wildlife: A Need of Time , The Scientific Temper: Vol. 13 No. 01 (2022): The Scientific Temper
<< < 24 25 26 27 28 29 30 31 32 33 > >>
You may also start an advanced similarity search for this article.

