A COVID Net-predictor: A multi-head CNN and LSTM-based deep learning framework for COVID-19 diagnosis
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.3.16Keywords:
Keywords—COVID-19 Prediction, Deep Learning, Convolutional Neural Network, Long-Short-Term Memory, Attention Mechanism, Hybrid OptimizerDimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
COVID-19 pandemic alerts the necessity of preparing alternate respirational health detective measures that improve time, expense, and prediction performance. Prevention of COVID-19 spread depends on early identification and precise diagnosis. Since the commonly used real-time Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) swab test is laborious and unreliable, radiography images are still advised for chest screening. Unfortunately, complexities in early detection using traditional approaches urge innovative research in this field. Intending to introduce a novel COVID-19 prediction scheme, this paper employed a COVIDNet-Predictor. This model is built with various stages including preprocessing, segmentation, feature extraction, selection and fusion, prediction and monitoring. The input images are initially preprocessed to enhance image quality and noise reduction. A U-net segmentation is carried out to find the Region of Interest (ROI). Color, shape and textual features are extracted and are further optimally chosen by a hybrid optimizer EvoNSGA II. Besides, the optimal features are fused through a Hierarchical Attention Network (HAN) and given as input to the COVIDNet-Predictor. The proposed COVIDNet-Predictor is a combination of Multi-Head Convolutional Neural Network (MHCNN), and Long-Short-Term Memory (LSTM)architectures. Additionally, a monitoring and feedback loop is added to make the model fit the real-time applications based on patient data. The efficacy of the proposed COVIDNet -Predictor is evaluated via a comparison with SOTA models and proved its competence by attaining 95.04% accuracy.Abstract
How to Cite
Downloads
Similar Articles
- B. S. E. Zoraida, J. Jasmine Christina Magdalene, Smart grid precision: Evaluating machine learning models for forecasting of energy consumption from a smart grid , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- V. Infine Sinduja, P. Joesph Charles, A hybrid approach using attention bidirectional gated recurrent unit and weight-adaptive sparrow search optimization for cloud load balancing , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- S. Vanaja, Hari Ganesh S, Application of data mining and machine learning approaches in the prediction of heart disease – A literature survey , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- R Prabhu, S Sathya, P Umaeswari, K Saranya, Lung cancer disease identification using hybrid models , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Engida Admassu, Classifying enset based on their disease tolerance using deep learning , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Y. Mohammed Iqbal, M. Mohamed Surputheen, S. Peerbasha, Swarm intelligence-driven HC2NN model for optimized COVID-19 detection using lung imaging , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
- Yasodha V, V. Sinthu Janita, AI-driven IoT routing: A hybrid deep reinforcement learning and shrike optimization framework for energy-efficient communication , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper
- P S Renjeni, B Senthilkumaran, Ramalingam Sugumar, L. Jaya Singh Dhas, Gaussian kernelized transformer learning model for brain tumor risk factor identification and disease diagnosis , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- S. Kumar, M. Santhanalakshmi , R. Navaneethakrishnan, Content addressable memory for energy efficient computing applications , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- D. Padma Prabha, C. Victoria Priscilla, A combined framework based on LSTM autoencoder and XGBoost with adaptive threshold classification for credit card fraud detection , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.

