RFSVMDD: Ensemble of multi-dimension random forest and custom-made support vector machine for detecting RPL DDoS attacks in an IoT-based WSN environment
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.3.02Keywords:
Internet of Things, Wireless sensor networks, Security, Distributed denial of service attacks, Routing protocol for low power and lossy networks.Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Growing dependence on the internet of things (IoT) and wireless sensor networks (WSNs) has led to critical security issues, especially concerning distributed denial of service (DDoS) attacks based on RPL. Such attacks can severely compromise the network’s security, reliability, and efficiency. To effectively address this problem, this research proposes (RFSVMDD) a novel hybrid detection model that combines a multi-dimensional random forest (MDRF) with a custom-made support vector machine (CSVM). The proposed technique uses MDRF to provide scalability for consistent feature selection and anomaly detection across high-dimensional datasets. CSVM reduces false positives and increases detection accuracy through its improved classification of potential threats. Experimental assessments in simulated IoT-based WSN environments show that the model outperforms conventional machine learning methods regarding accuracy, detection speed, and durability. This novel ensemble approach presents a promising solution by enhancing IoT and WSN networks against RPL DDoS attacks.Abstract
How to Cite
Downloads
Similar Articles
- Krutuja S. Gadgil, Prabodh Khampariya, Shashikant M. Bakre, Investigation of power quality problems and harmonic exclusion in the power system using frequency estimation techniques , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Rekha Raghavendra, Shobha Gowda, Jissy Thomas, Fingerprint doorlock system using Arduino uno , The Scientific Temper: Vol. 16 No. Spl-2 (2025): The Scientific Temper
- Varsha Sharma, Krishna Kumar Gupta, Comparative accuracy of IOL power calculation formulas in nanophthalmic eyes undergoing cataract surgery , The Scientific Temper: Vol. 16 No. 07 (2025): The Scientific Temper
- Raja Selvaraj, Manikandasaran S Sundaram, ECM: Enhanced confidentiality method to ensure the secure migration of data in VM to cloud environment , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Akanksha Singh, Nand Kumar, Analysis of renewable energy and economic growth of Germany , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Ashutosh Kumar, The Effect of Noise Exposure on Cognitive Performance and Brain Activity Patterns , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- Sruthy M.S, R. Suganya, An efficient key establishment for pervasive healthcare monitoring , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Swetha Rajkumar, Jayaprasanth Devakumar, LSTM based data driven fault detection and isolation in small modular reactors , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Hannah Ayaba Tanye, Henry Akwetey Matey, Isaac Asampana, Albert Akanlisikum Akanferi, Douglas Yeboah , Augustina Dede Agor, Assessing the information security awareness among Ghanaian University students , The Scientific Temper: Vol. 16 No. 07 (2025): The Scientific Temper
- Arvind K Shukla, Balaji V, Dharani R, M Ananthi, R Padmavathy, Romala V. Srinivas, Precision agriculture predictive modeling and sensor analysis for enhanced crop monitoring , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
<< < 2 3 4 5 6 7 8 9 10 11 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- R. Sakthiraman, L. Arockiam, RRFSE: RNN biased random forest and SVM ensemble for RPL DDoS in IoT-WSN environment , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper

