RFSVMDD: Ensemble of multi-dimension random forest and custom-made support vector machine for detecting RPL DDoS attacks in an IoT-based WSN environment
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.3.02Keywords:
Internet of Things, Wireless sensor networks, Security, Distributed denial of service attacks, Routing protocol for low power and lossy networks.Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Growing dependence on the internet of things (IoT) and wireless sensor networks (WSNs) has led to critical security issues, especially concerning distributed denial of service (DDoS) attacks based on RPL. Such attacks can severely compromise the network’s security, reliability, and efficiency. To effectively address this problem, this research proposes (RFSVMDD) a novel hybrid detection model that combines a multi-dimensional random forest (MDRF) with a custom-made support vector machine (CSVM). The proposed technique uses MDRF to provide scalability for consistent feature selection and anomaly detection across high-dimensional datasets. CSVM reduces false positives and increases detection accuracy through its improved classification of potential threats. Experimental assessments in simulated IoT-based WSN environments show that the model outperforms conventional machine learning methods regarding accuracy, detection speed, and durability. This novel ensemble approach presents a promising solution by enhancing IoT and WSN networks against RPL DDoS attacks.Abstract
How to Cite
Downloads
Similar Articles
- S. Munawara Banu, M. Mohamed Surputheen, M. Rajakumar, Bio-Inspired and Machine Learning-Driven Multipath Routing Protocol for MANETs Using Predictive Link Analytics , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- D. Prabakar, Santhosh Kumar D.R., R.S. Kumar, Chitra M., Somasundaram K., S.D.P. Ragavendiran, Narayan K. Vyas, Task offloading and trajectory control techniques in unmanned aerial vehicles with Internet of Things – An exhaustive review , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- M. Ragul, A. Aloysius, V. Arul Kumar, Enhancing IoT blockchain scalability through the eepos consensus algorithm , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- Rama Rao J.V.G, Raja Gopal A.N.V.J, Ponnaganti S. Prasad, Illa V. Ram, Muthuvel B, Power quality improvement in BLDC motor drive using PFC converter , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- ABHAYA K. SINGH, IMPLICATIONS OF CLIMATE CHANGE IN THE HIMALAYAN REGION AND ITS IMPACT ON INDIAN SECURITY , The Scientific Temper: Vol. 2 No. 1&2 (2011): The Scientific Temper
- Muthuvel Balasubramanian, Jonnakuti V. G. Rama Rao, Surya C. P. R. Sanaboina, Vavilala Venkatesh, Amalodbhavi Sanaboina, Tracking and control of power oscillation dampings in transmission lines using PV STATCOM , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Prithi M., Sudhakar S., Effect of autoregulatory progressive resistance exercise on hip extensor and knee flexor muscles on power, balance, and Ollie performance among skateboarders , The Scientific Temper: Vol. 16 No. 07 (2025): The Scientific Temper
- Santhanalakshmi M, Ms Lakshana K, Ms Shahitya G M, Enhanced AES-256 cipher round algorithm for IoT applications , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- K. Mohamed Arif Khan, A.R. Mohamed Shanavas, Optimizing IoT application deployment with fog - cloud paradigm: A resource-aware approach , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- S. Dhivya, S. Prakash, Power quality assessment in solar-connected smart grids via hybrid attention-residual network for power quality (HARN-PQ) , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- R. Sakthiraman, L. Arockiam, RRFSE: RNN biased random forest and SVM ensemble for RPL DDoS in IoT-WSN environment , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper

