RFSVMDD: Ensemble of multi-dimension random forest and custom-made support vector machine for detecting RPL DDoS attacks in an IoT-based WSN environment
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.3.02Keywords:
Internet of Things, Wireless sensor networks, Security, Distributed denial of service attacks, Routing protocol for low power and lossy networks.Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Growing dependence on the internet of things (IoT) and wireless sensor networks (WSNs) has led to critical security issues, especially concerning distributed denial of service (DDoS) attacks based on RPL. Such attacks can severely compromise the network’s security, reliability, and efficiency. To effectively address this problem, this research proposes (RFSVMDD) a novel hybrid detection model that combines a multi-dimensional random forest (MDRF) with a custom-made support vector machine (CSVM). The proposed technique uses MDRF to provide scalability for consistent feature selection and anomaly detection across high-dimensional datasets. CSVM reduces false positives and increases detection accuracy through its improved classification of potential threats. Experimental assessments in simulated IoT-based WSN environments show that the model outperforms conventional machine learning methods regarding accuracy, detection speed, and durability. This novel ensemble approach presents a promising solution by enhancing IoT and WSN networks against RPL DDoS attacks.Abstract
How to Cite
Downloads
Similar Articles
- Krishna P. Kalyanathaya, Krishna Prasad K, A novel method for developing explainable machine learning framework using feature neutralization technique , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Sindhu S, L. Arockiam, DRMF: Optimizing machine learning accuracy in IoT crop recommendation with domain rules and MissForest imputation , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Krishna P. Kalyanathaya, Krishna Prasad K, A framework for generating explanations of machine learning models in Fintech industry , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Sathya R., Balamurugan P, Classification of glaucoma in retinal fundus images using integrated YOLO-V8 and deep CNN , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Parismita Bhagawati, Paramita Dey, Animal cruelty legislation in India: A green criminological exploration , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Sudheer Choudari, K. Rajasekhar, Ch. Sudheer, Comparative study of the foundation model of a 220 kV transmission line tower with different footing steps - Finite element analysis , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- James L T Thanga, Ashley Lalremruati, Agent’s roles and perspectives of life insurance market in North-East India , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- T. Ramyaveni, V. Maniraj, Hyperparameter tuning of diabetes prediction using machine learning algorithm with pelican optimization algorithm , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Isreal Zewide, A coffee biochar-mineral NP interaction: Boon for soil health , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- B. Kalpana, P. Krishnamoorthy, S. Kanageswari, Anitha J. Albert, Machine learning approaches for predicting species interactions in dynamic ecosystems , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
<< < 21 22 23 24 25 26 27 28 29 30 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- R. Sakthiraman, L. Arockiam, RRFSE: RNN biased random forest and SVM ensemble for RPL DDoS in IoT-WSN environment , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper

