FR-CNN: The optimal method for slicing fifth-generation networks through the application of deep learning
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.4.01Keywords:
Faster R-CNN, Deep learning, Network slicing, Deep belief network, Neural network.Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The 5G network is expected to accommodate numerous novel use cases originating from vertical businesses in mobile broadband communication service. Higher standards of execution, affordability, security, and board-level adaptability are only a few of the difficult needs brought on by these recently changed conditions. The current organizational strategy of using a one-size-fits-all blueprint is not practicable. An emerging strategy for sustainably meeting these diverse criteria is to split a single physical network into multiple logical networks, each tailored to a unique set of requirements. The authors of this work created a hybrid learning approach to network slicing. Improving weighted feature extraction (OWFE), data collection, and slicing classification are the three processes recommended for this work. A dataset of 5G network slices is used as an initial input. This dataset contains metrics such as bandwidth, duration, modulation type, delay rate, jitter, speed, user device type, packet loss ratio, and packet delay budget. The last step is to use the Faster R-CNN model, which includes the RPN model, to classify the values provided. From this model, one can generate precise network slices like URLLC, mMTC, and eMBB. A change in the configuration of accurate 5G organization slicing would be brought about by the suggested approach, according to the findings of the study.Abstract
How to Cite
Downloads
Similar Articles
- R. Chandran, J. Selvam, Evaluating the impact of MOOC participation on skill development in autonomous engineering colleges , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- M. Ragul, A. Aloysius, V. Arul Kumar, Enhancing IoT blockchain scalability through the eepos consensus algorithm , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- D. Jayadurga, A. Chandrabose, Distribution of virtual machines with SVM-FFDM approach in cloud computing , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Manisha Anil Vhora, Vidya Bhandwalkar, Prashant Mangesh Rege, AI-driven HR analytics: Enhancing decision-making in workforce planning , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- D. Jayadurga, A. Chandrabose, Expanding the quantity of virtual machines utilized within an open-source cloud infrastructure , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Shantanu Kanade, Anuradha Kanade, Secure degree attestation and traceability verification based on zero trust using QP-DSA and RD-ECC , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Anilkumar K. Varsat, Sociolinguistics competence development in the ESL classroom: Challenges and opportunities , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Mohiyuddeen Hafzal, Gayathri B.J., M. Meghana Shet, Shaping the future: Education and skill development for Viksit Bharat@2047 , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Jayalakshmi K., M. Prabakaran, Feature selection in HR analytics: A hybrid optimization approach with PSO and GSO , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Sruthy M.S, R. Suganya, An efficient key establishment for pervasive healthcare monitoring , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
<< < 17 18 19 20 21 22 23 24 25 > >>
You may also start an advanced similarity search for this article.

