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Abstract

The 5G network is expected to accommodate numerous novel use cases originating from vertical businesses in mobile broadband
communication service. Higher standards of execution, affordability, security, and board-level adaptability are only a few of the difficult
needs brought on by these recently changed conditions. The current organizational strategy of using a one-size-fits-all blueprint is not
practicable. An emerging strategy for sustainably meeting these diverse criteria is to split a single physical network into multiple logical
networks, each tailored to a unique set of requirements. The authors of this work created a hybrid learning approach to network slicing.
Improving weighted feature extraction (OWFE), data collection, and slicing classification are the three processes recommended for this
work. A dataset of 5G network slices is used as an initial input. This dataset contains metrics such as bandwidth, duration, modulation
type, delay rate, jitter, speed, user device type, packet loss ratio, and packet delay budget. The last step is to use the Faster R-CNN
model, which includes the RPN model, to classify the values provided. From this model, one can generate precise network slices like
URLLC, mMTC, and eMBB. A change in the configuration of accurate 5G organization slicing would be brought about by the suggested

approach, according to the findings of the study.

Keywords: Faster R-CNN, Deep learning, Network slicing, Deep belief network, Neural network.

Introduction
Communication technology has not only greatly increased
the rise of the global gross domestic product (GDP), but it
has also sped up the process of

society’s digitization (Afolabi et al., 2018). We don’t
know much about the future of portable interchanges,
but we can predict that they will expand into sectors like
energy, manufacturing, logistics, and transportation, as well
as sectors like healthcare and finance that aren’t making
the most of mobile services just yet. The entire potential
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of the mobile network is being underutilized because of
the different and frequently competing communication
needs of these businesses (Abidi et al., 2021). An extremely
dependable service may be more important to one client
than ultra-low latency or ultra- high bandwidth to another.
In order to accomplish all of these objectives at once, the
5G network needs to be designed to provide a mix of
capabilities that can be changed (AlQahtani & Alhomigani,
2020). Looking at it from a more pragmatic angle, it seems
to have created a number of distinct businesses, each
catering to a different type of commercial client. Instead of
the impractical one-size-fits-all strategy seen in previous
and present mobile eras, these dedicated organizations
would make it possible to build altered usefulness and
organizational activity to handle the concerns of particular
company clients (Debbabi et al., 2020).

Recent proposals have highlighted software defined
networking (SDN) and network functions virtualization
(NFV) as critical innovations for developing 5G frameworks
that are cloudified, virtualized, and softwarized (Foukas
et al., 2017). With SDN, the sending of information and
the control of the network are kept apart. Conceptually
centralized controllers allow network control operations to
run autonomously as apps. Network function virtualization
(NFV)isolates specific network functions from expensive and

Published : 25/04/2025
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Figure 1: Network slicing

specialized hardware platforms by utilizing general-purpose
commodity hardware (Li et al., 2019).

A variety of virtual organizational procedures can be
built by network administrators on top of the conventional
product servers (Li et al., 2017). Mobile Edge Computing
(MEC) is a foundational innovation for 5G that is expected
to support low-inactivity correspondence, one of the use
cases for future 5G. It moves administrative tasks, data
storage, and public distributed computing capabilities
closer to the organization’s periphery. As a result, mobile
clients experience very little dormancy from beginning to
end when referring to virtual assets within the introduction
company (Nadeem et al., 2021). “Network slicing” basically
makes this possible and it's essentially more effective
when working with multiple dedicated organizations
on a single stage. The term for the practice of managing
multiple interdependent organizations as independent
but complementary business processes on a single physical
infrastructure is “network slicing.” When compared to the
existing methods, this signifies a major shift in perspective.
Thanks to network licing, the 5G network can respond to the
environment rather than the other way around. A network
sliceis a useful tool for many administrators since it contains
several organization components (Song et al., 2019). These
components include the terminal, access organization, centre
organization, and transport organization. Different from
other network slices, a network slice may have dedicated or
shared resources, such as storage space, processing power,
and data transfer capabilities (Thantharate et al., 2019). It
follows that administrators of portable network slices will
likely aim to provide a variety of slices bundled into a single
product for business clients (a business pack) with varying
needs (for example, a car might need a high-data-transfer-
capacity slice for infotainment and a very reliable slice for
telemetry, assisted driving), and a single type of slice that
solves problems in different industries. To construct, operate,
manage, design, deploy, and administer a network slice that

can meet the quality of service (QoS) requirements of the
assistance that is intended to be transported through it;
regardless of changing network conditions or time-varying
composite data, a large amount of composite data must be
analyzed (Wang et al., 2019). Managing massive amounts
of data rapidly while constructing and running network
slices is a challenging task for humans. Consequently, there
have been calls for the automation of certain processes.

Machine learning algorithms continue to diverge from

traditional algorithms in a great many ways; additionally,

ML methods are costly, data intensive, and reinforcement

heavy. Deep learning algorithms have recently played a

crucial role in network slicing (Wang et al., 2019). Mining

(DL can categories services, for example), preserving,

reasoning, authenticating, anticipating (DL can forecast user

or traffic trends, for example), and sensing (DL can identify
anomalies, for instance) are all capabilities of DL. Specifically,
it is capable of rapidly analyzing massive amounts of data
in order to adapt the system to changing conditions over
time, generate more accurate automated predictions of the

future, and propose energetic solutions (Zhang et al., 2017).

The primary contributions of this paper are:

« Develop a hybrid learning-based network slicing
approach with three phases: data collection, OWFE, and
classification (Zhang, 2019).

«  Finish OWFE procedure and acquire important data for
network slicing.

« Incorporate Faster RCNN to classify features with high
accuracy.

Faster RCNN employs RPN instead of selective search,

enabling exact network slice categorization utilizing deep

learning concepts like RNN- based LSTM and DBN.

The following is the structural arrangement of the
remaining parts of this elucidation The second section
includes a survey of relevant material; the third section
offers a concise explanation of secured 5G network slicing;
the fourth section investigates arranged 5G network slicing;
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the results and discussions are presented in the fifth section;
and the sixth section brings the study to a conclusion in its
final stage.

Literature Review

A comprehensive overview of a variety of research and the
contributions they made to network slicing in 5G networks
is provided by the evaluation of the relevant literature. An
ideal count of virtual resources in 5G was developed by
using mixed integer linear programming (MILP). This method
provided the best optimal answer, however it was unable
to take into account non-linear effects. For the purpose of
dynamically sharing network resources across operators’
networks, adopted NFV. This allowed for improved slicing
for both NFV and infrastructure virtualization; nevertheless,
its performance still need improvement. For the purpose of
obtaining the physical path of the slice connection, utilized
the K-shortest path approach. This technique is efficient in
resolving link mapping concerns; however, it is unable to
consider negative edges. Even if it is not suitable for resolving
minor problems, utilized deep reinforcement learning (DRL)
for the purpose of making automatic decisions in order to
maximize the utilization of resources for each slice. Machine
learning (ML) techniques were utilized by in order to improve
the therapy pathway for patients. In order to achieve high
performance, the algorithms need additional training
data. Deep learning neural networks (DLNN) were utilized,
in order to make predictions regarding network resource
reservation. These networks performed exceptionally well
even when dealing with unstructured data, although the
training process was quite costly due to the complexity of
large datasets. In addition, exploited NFVin order to divide a
single physical infrastructure into numerous virtual wireless
networks. This was done in order to successfully manage
information technology in an abstract manner. A high
level of performance was achieved by the utilization of the
discrete hunting optimization algorithm (DHOA), which was
extremely costly. An improved operational simplicity was
achieved by the utilization of a modified deep deterministic
policy gradient (DDPG) and double deep-Q-network
method. However, this increased the amount of data that
was required. Deep neural networks (DNNs) were utilized
by for the purpose of automatic decision-making, which is
a process that is highly costly.

Secured network slicing in 5g network

Important 5G network slicing ideas and terminologies are
introduced in this section. If network slicing is used, the same
infrastructure can support numerous 5G services. Execution
and usefulness differ. In the use cases it supports, assistance
should have developed guidelines. However, focusing
on a more specific collection of criteria is more practical
and feasible than considering a more comprehensive set
of needs, which can be difficult (if possible) and is usually

unnecessary. The term organization cut situation refers
to a utilitarian organization that fulfills organizing details
and provides specific help to meet criteria. An intelligent
organization uses physical and virtual resources and
has capacity, organization, handling, and access hubs.
Neighborhood consistent organizations can be represented
by network slice subnets. A network slice situation can
include a fastened network cut subnet setup. Figure 1 shows
the whole network slicing architecture with independent
management capabilities for each component.

Resource layer

End users obtain services from the network functions and
resources of the bottom layer in response to a request. This
ayeris known as the resource layer. The utilization of virtual
or logical resources as well as network activities are both
feasible options.

Network slice instance layer

There are slices that make up the middle of the layer, and
each of these slices provides the system administration
capabilities that are required by the assistance cases.
Depending on the circumstances, a slice may operate
directly over the organization’s resources or through the
utilization of other slices, providing assistance for at least
one occasion.

Service instance layer

There is a layer known as the Service Instance Layer, which
is comprised of the service instances that are provided to
customers and consume the slices. In order to simplify things
and make it easier to understand, we will refer to a service
instance as a service.

The image illustrates a hierarchical structure of network
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Figure 2: Overall architecture of the network slicing
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services, slices, and resources, along with their management
functions, typical in modern software-defined networking
and network function virtualization architectures (Figure 2).

Proposed Architecture
An innovative approach dubbed “network slicing” creates
several customizable slices from a real network (Figure 3).
Thus, it may enable the company to meet 5G administrative
needs. ML algorithms could help evaluate massive volumes
of data fast, learn how to perform things right in many
situations, and accurately forecast the future (Table 1).
Figure 4 shows the proposed networkslicing classification
architecture. Counting 5G-connected devices was our first
step. Mobile devices, connected cars, industrial 4.0, public
safety, loT devices, healthcare, games, etc. We collected
data on user gadget kind, time frame, loss of packets ratio,
delay packets budget, bandwidth, latency rate, acceleration,
jitter, and modulation type from various devices or users.
We normalized the data after collecting these attributes to
reduce redundant data by varying attribute values from 0 to
1. We performed the OWFE utilizing the proposed F-RCNN
to categories the weight function. Researchers used the
DBN, a hybrid NN-DL model, to predict network slicing.
This let us employ the new weight-optimized features. The
novel F-RCNN optimizes NN and DBN weights. OWFE and
optimized hybrid categorization aim to improve network
slicing classification. A number of anticipated segments
include enhanced mobile broadband (eMBB), massive
machine type communications (mMTC), and ultra reliable
low-latency communication (URLLC).

Weighted Component Extraction

Let FFr = F1,F2,...... Fn are standardized characteristics.
The explanation of weighted feature is given by

Table 1: Overall summary of various features used in network slicing

Feature Description

User device type

Duration

Packet loss rate

Packet delay
budget

Bandwidth

Delay rate
Speed
Jitter

Modulation type

Properties describe charactersand parts of
a device

How long persist

Percentage of packet vanish with respect to
packet transmitted

Maximum amount of delay a packet will
accept

fastest transfer of information rate possible
with an internet connection

the time frame before an event occurs
Dimensions of location variation

Probability periodic signal’s deviation from
genuine periodicity

Changing properties of waveform
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Figure 3: Proposed architecture
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Figure 4: Deep learning algorithms with performance measures
NFFr=FFr xWFr (1)

Within the equation presented above, the variable NFFr
represents the new features, n represents the length of
the features, and WFr represents the weight scaling of the
features. In the above condition, NFFr is new elements, n
is the length of features and WFr is the weight scaling the
highlights

Arrangement Encoding

Both the weights of the elements and the weights of the
DBN are improved by the F-RCNN that has been proposed.
Additionally, an RNN-based LSTM has been further created
as a component of the arrangement encoding, as shown in
Figure 4. To be more specific, the component loads have a
base limit of zero and a maximum limit of one, respectively.
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Table 2: Comprehensive evaluation of the suggested along with the conventional DL
Performance measures RCNN+DBN LSTM + DBN FRCNN + Improved RNN- LSTM- +DBN CNN + DBN
Specificity 1.17 143 1.270 0.97
Precision 1.26 1.46 1.370 0.95
Sensitivity 0.85 143 1.530 0.81
Accuracy 0.94 1.12 1.720 0.91
FDR 0.53 1.54 1.010 0.09
NPV 1.12 147 1.670 0.88
FNR 0.15 1.14 1.220 0.04
FPR 0.53 1.01 1.117 0.01
The loads of the DBN and the more developed RNN-based (T [T
LSTM are referred to by these words, which each represent "“‘“”":";“::“_Z::*"""“" '"‘”‘"":"’;:;ﬁ:::“’”"“"

WTNN and WTDB in their own right.

Experimental results and discussion

We used MATLAB 2018a for performance analysis and 5G
network slicing. A 10-person population was employed
for up to 25 tests. In this case, we compared the FRCNN+
Improved RNN-LSTM-+DBN algorithm to SVM, KNN, NN,
DBN, and other well-known ML algorithms. The investigation
used FNR, FPR, FDR, NPV, accuracy, sensitivity, specificity, &
precision.

In Figure 4 deep learning methods RCNN+DBN,
LSTM+DBN, FRCNN+ Improved RNN-LSTM+DBN, and
CNN+DBN are compared in the graph (Using Table 2).
Performance measurements include specificity, precision,
sensitivity, accuracy, FDR, NPV, FNR, and FPR. Region-
based convolutional neural networks (RCNN) and deep
belief networks (DBN) are used in the RCNN+DBN
model (green curve). Multiple measures show moderate
performance for this model. The LSTM+DBN model (orange
curve) outperforms RCNN+DBN in most measures. Fast
Region-based convolutional neural networks (FRCNN)
are combined with enhanced RNN, LSTM, and DBN in the
FRCNN+ enhanced RNN-LSTM+DBN model (blue curve).
This model excels in specificity, precision, and accuracy.
The CNN+DBN model (red curve) uses CNN and DBN and
performs inconsistently, with poorer sensitivity and greater
false discovery rates. All models have excellent specificity,
or capacity.

To recognize negatives, but FRCNN+ Improved RNN-
LSTM+DBN performs best. Most models maintain high
precision, with FRCNN+ Improved RNN- LSTM+DBN and
LSTM+DBN performing better. RCNN+DBN and CNN+DBN
have poorer sensitivity than LSTM+DBN and FRCNN+
Improved RNN- LSTM+DBN. The FRCNN+ Improved
RNN-LSTM+DBN and LSTM+DBN models perform best in
accuracy, which indicates model soundness. All models
perform well with small changes in false discovery rate (FDR),
while CNN+DBN have a larger FDR. All models perform well
on the negative predictive value (NPV), which represents the
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Table 3: Overall analysis of proposed with conventional ML

Performance measures LSTM+D BN ANN KNN Improve d RNN- LSTM-+DBN SVm
Specificity 0.98 0.97 0.97 0.98 0.96
Precision 0.96 0.93 0.96 0.97 0.80
Sensitivity 0.83 0.84 0.85 0.87 0.82
Accuracy 0.92 0.92 0.94 0.95 0.86
FDR 0.97 0.96 0.97 0.98 0.90
NPV 0.14 0.10 0.15 0.12 0.04
FNR 0.97 0.96 0.97 0.98 0.98
FPR 0.01 0.02 0.01 0.02 0.15

proportion of real negatives among all negative findings.
While CNN+DBN have a greater FNR, all models have
low FNRs. Finally, all models have a low FPR, suggesting
strong performance. Overall, the FRCNN+ Improved RNN-
LSTM+DBN model outperforms most metrics, indicating
its greater efficiency and accuracy in deep learning tasks.
LSTM+DBN performs well, while RCNN+DBN and CNN+DBN
vary across performance criteria.

Accuracy, sensitivity, precision, specificity, FDR, NPV, FNR,
and FPR are some of the performance indicators that were
drawn for the proposed network slicing approach across
the DBN+NN graph during the learning percentage. The
development of network slicing is the subject of this figure,
which is Figure 5.

Figure 6 displays the outcomes of our comparison
between the performance of the suggested Improved
RNN based LSTM+DBN and a number of widely used ML
algorithms, NPV, FNR, precision, sensitivity, accuracy, and
other performance indicators; and computed the results
(See Table 3). The findings demonstrate that, in comparison
to previous machine learning algorithms, the proposed
Improved RNN based LSTM+DBN outperforms them all.
When compared to existing model, the accuracy of the
proposed Improved RNN-based LSTM+DBN is better in
Figure 6.

The graph compares deep learning algorithm
performance and metrics. LSTM+DBN, ANN, KNN, Improved
RNN-LSTM+DBN, and SVM are tested for specificity,
precision, sensitivity, accuracy, FDR, NPV, FNR, and FPR.

LSTM+DBN, shown in red, combines LSTM networks
with deep belief networks. Across most measurements,
it has good specificity and few false positives. In terms
of precision and sensitivity, the green curve ANN model
performs moderately. According to the orange curve, the
KNN algorithm has slightly poorer sensitivity and accuracy
than the rest. The pink curve shows the Improved RNN-
LSTM+DBN model, which combines RNN, LSTM, and DBN
and runs well in specificity, precision, and accuracy. The
yellow curve represents the SVM method, which performs
well across most metrics but has a variable false discovery
and false positive rate. In performance measures, all models

[ LsTM+DBN ] ANN KNN
Improved RNN-LSTM-+DBN SVM
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Figure 6: Performance measures of deep learning algorithms

have excellent specificity, identifying negatives. The
accuracy of positive predictions is high in most models.
KNN has reduced sensitivity, or capacity to identify positives.
Better RNN-LSTM+DBN and LSTM+DBN models have higher
accuracy. With minor differences, all models perform well
for FDR, the proportion of false positives among all positive
outcomes. All models do well with NPV, the fraction of real
negatives among all negative results. All models have a
low FNR. All models have low FPR, the proportion of false
positives among all negative results.

The new model proposed (red curve), has a larger node
utilization ratio distribution than other models. With a
middle-range node utilization ratio distribution, the CNN
+ DBN (brown curve) model uses CNN and DBN. The RNN
+ DBN (orange curve) model has a significantly lower node
utilization ratio distribution than CNN + DBN. The final
model, the LSTM + DBN (brown curve), has the lowest node
utilization ratio distribution.

Figures 7a & b, individually, the LSTM+DBN in view of
further developed RNN have the most noteworthy hub
and connection utilization proportions. The information
shows that the LSTM+DBN in view of Further developed
RNN disperses more assets to slice in contrast with other
methods. Furthermore, we see that hub use is dependent
on the slice acknowledgment proportion; that is, higher
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the slice acknowledgment proportion, higher the hub use;
then again, connect use displays an unmistakable way of
behaving. Not at all like one slice connect, which can be
provided in more than one way, one slice hub is provisioned
on a solitary actual hub.

Conclusion
The purpose of this research was to develop a hybrid
deep learning algorithm that would serve as the basis
for an effective network slicing solution for 5G wireless
communications. There is a concise synopsis provided
of the developments that have occurred in the uses of
deep learning in 5G networks. In order to conduct a
comprehensive evaluation of the significance of hubs
and to rank hubs based on topological and network asset
features, our strategy makes use of the LSTM+DBN method.
In the subsequent step, the slice nodes are assigned based
on the results of the positioning test. A method choosing
mechanism is proposed, and the k most limited manner
technique is developed, with the goal of arranging slice
links during the provisioning step.

In comparison to the calculations that are now in place,
a few simulations demonstrate that our proposed method
has the potential to effectively employ network resources in
order to achieve the highest possible revenue-to-cost ratio
execution and the most significant slice acceptance ratio
percentage. Additionally, we investigated the performance

of the algorithm when it was subjected to a variety of slice
security limits and quantities of traffic. According to the
results, it is possible that our framework could still produce
the greatest possible outcomes. At a later time, we will need
to implement a dynamic reconfiguration of slices in order
to further improve the slice acceptance ratio, in addition to
revenue and expenses associated with provisioning.
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