A review and analysis of deep learning methods for stock market prediction with variety of indicators
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2025.16.2.13Keywords:
Stock market, Deep learning, Historical data, Stock prices market activity.Dimensions Badge
Issue
Section
License
Copyright (c) 2025 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The stock market is an open forum in which stocks may be exchanged, bought, and sold on a stock exchange or over-the-counter to gain profits. However, the stock market may be impacted by a variety of variables like business cycle, economic conditions, changing political and government policies, market volatility and so on, resulting in lesser forecast possibilities. Statistical models have difficulty predicting the stock market because of their alternating nature and relying only on previous data does not give optimal future results. In recent years, Deep Learning (DL) models have gained attention in stock market forecasting. DL models accurately estimate both past and current data to improve prediction outcomes. Various DL models are explored in this study and their application to stock market prediction, specifically how past patterns can be used to anticipate future trends. DL models are able to reveal previously unseen patterns and connections by using massive datasets, including market prices, transaction amounts, news mood, and macroeconomic indicators. Furthermore, the article compares and contrasts a number of DL algorithms that are part of stock market prediction systems, outlining their advantages and disadvantages. At last, possible improvisations are made to improve the effectiveness and precision of stock market forecasting.Abstract
How to Cite
Downloads
Similar Articles
- S. TAMIL FATHIMA, K. FATHIMA BIBI, Early diagnosis of cardiac disease using Xgboost ensemble voting-based feature selection, based lightweight recurrent neural network approach , The Scientific Temper: Vol. 16 No. 06 (2025): The Scientific Temper
- Swetha Rajkumar, Jayaprasanth Devakumar, LSTM based data driven fault detection and isolation in small modular reactors , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- P. S. Dheepika, V. Umadevi, An optimized approach for detection and mitigation of DDoS attack cloud using an ensembled deep learning approach , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Ganga Gudi, Mallamma V Reddy, Hanumanthappa M, Enhancing Kannada text-to-speech and braille conversion with deep learning for the visually impaired , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- T. Ramyaveni, V. Maniraj, Hyperparameter tuning of diabetes prediction using machine learning algorithm with pelican optimization algorithm , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Temesgen A. Asfaw, Batch size impact on enset leaf disease detection , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Azar Bagheri Masoudzade, Maryam Ebrahim Nezhad, Appraising social class dimensions on learning motivation of Iranian students: Family studies and their status in focus , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Nisha Patil, Archana Bhise, Rajesh K. Tiwari, Fusion deep learning with pre-post harvest quality management of grapes within the realm of supply chain management , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- S. Prabagar, Vinay K. Nassa, Senthil V. M, Shilpa Abhang, Pravin P. Adivarekar, Sridevi R, Python-based social science applications’ profiling and optimization on HPC systems using task and data parallelism , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Yasodha V, V. Sinthu Janita, AI-driven IoT routing: A hybrid deep reinforcement learning and shrike optimization framework for energy-efficient communication , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper
<< < 2 3 4 5 6 7 8 9 10 11 > >>
You may also start an advanced similarity search for this article.

